Suppr超能文献

用于评估数据驱动的儿科脓毒症ICD编码类别的效用的概率图模型

Probabilistic Graphical Models for Evaluating the Utility of Data-Driven ICD Code Categories in Pediatric Sepsis.

作者信息

Valdez Lourdes A, Hernandez Edgar Javier, Matthews O'Connor, Mulvey Matthew, Crandall Hillary, Eilbeck Karen

机构信息

University of Utah, Salt Lake City, UT.

出版信息

AMIA Annu Symp Proc. 2025 May 22;2024:1149-1158. eCollection 2024.

Abstract

Electronic health records (EHRs) are information systems designed to collect and manage clinical data in order to support various clinical activities. They have emerged as valuable sources of data for outcomes research, offering vast repositories of patient information for analysis. Definitions for pediatric sepsis diagnosis are ambiguous, resulting in delayed diagnosis and treatment, highlighting the need for precise and efficient patient categorizing techniques. Nevertheless, the use of EHRs in research poses challenges. Although EHRs were originally created to document patient encounters, the medical coding was designed to satisfy billing requirements. As a result, EHR data may lack granularity, potentially leading to misclassification and incomplete representation of patient conditions. We compared data-driven ICD code categories to chart review using probabilistic graphical models (PGMs) due to their ability to handle uncertainty and incorporate prior knowledge. Overall, this paper demonstrates the potential of using PGMs to address these challenges and improve the analysis of ICD codes for sepsis outcomes research.

摘要

电子健康记录(EHRs)是旨在收集和管理临床数据以支持各种临床活动的信息系统。它们已成为结果研究中有价值的数据来源,为分析提供了大量的患者信息库。儿科败血症诊断的定义不明确,导致诊断和治疗延迟,凸显了精确高效的患者分类技术的必要性。然而,在研究中使用电子健康记录带来了挑战。虽然电子健康记录最初是为记录患者诊疗过程而创建的,但医学编码是为满足计费要求而设计的。因此,电子健康记录数据可能缺乏粒度,可能导致患者病情的错误分类和不完整呈现。由于概率图形模型(PGMs)能够处理不确定性并纳入先验知识,我们将数据驱动的ICD代码类别与图表审查进行了比较。总体而言,本文展示了使用概率图形模型来应对这些挑战并改进败血症结果研究中ICD代码分析的潜力。

相似文献

6
Shared decision-making interventions for people with mental health conditions.心理健康问题患者的共同决策干预措施。
Cochrane Database Syst Rev. 2022 Nov 11;11(11):CD007297. doi: 10.1002/14651858.CD007297.pub3.

本文引用的文献

4
Sensitivity of ICD coding for sepsis in children-a population-based study.儿童脓毒症ICD编码的敏感性——一项基于人群的研究
Intensive Care Med Paediatr Neonatal. 2023;1(1):5. doi: 10.1007/s44253-023-00006-1. Epub 2023 Jun 13.
5
Epidemiology of Sepsis in US Children and Young Adults.美国儿童和年轻人脓毒症的流行病学
Open Forum Infect Dis. 2023 Apr 20;10(5):ofad218. doi: 10.1093/ofid/ofad218. eCollection 2023 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验