Suppr超能文献

用于预测强直性脊柱炎男性患者低骨密度的列线图的开发与验证

Development and validation of a nomogram for predicting low bone mineral density in male patients with ankylosing spondylitis.

作者信息

Yang Xiaotong, Cheng Qin, Li Yifan, Tang Hao, Chen Xin, Ma Lijun, Gao Jing, Ji Wei

机构信息

Nanjing University of Chinese Medicine, Nanjing, China.

Nanjing Jiangning Hospital of Chinese Medicine, Nanjing, China.

出版信息

Front Med (Lausanne). 2025 May 9;12:1549653. doi: 10.3389/fmed.2025.1549653. eCollection 2025.

Abstract

OBJECTIVE

This retrospective cohort study aimed to develop and validate clinical nomogram models for predicting site-specific low bone mineral density (BMD) risk in male patients with ankylosing spondylitis (AS).

METHODS

This study enrolled male AS patients treated at the Rheumatology Department of Jiangsu Provincial Hospital of Traditional Chinese Medicine between January 2017 and September 2024. A total of 322 eligible patients were randomly allocated to training and validation cohorts at a 7:3 ratio. Potential predictors of low BMD at the lumbar spine (LS) and left hip (LH) were initially screened through univariate logistic regression ( < 0.05), followed by stepwise bidirectional multivariate logistic regression (entry criteria  < 0.05) to identify independent predictors for each anatomical site. Based on the regression coefficients, we developed visualized nomogram prediction models for LS and LH low BMD, accompanied by an interactive online prediction tool. The models were comprehensively evaluated for discrimination, calibration, and clinical utility. After identifying the primary predictive factors, exploratory subgroup analyses were conducted to assess effect heterogeneity of key variables (BMI and serum uric acid).

RESULTS

This study included 322 male AS patients randomly allocated to training ( = 225) and validation ( = 97) cohorts with balanced baseline characteristics (all > 0.05). Multivariate logistic regression identified age at onset (LS OR = 0.96, 95%CI:0.93-0.99; LH OR = 0.97, 95%CI: 0.95-0.99), BMI (LS OR = 0.90, 95%CI: 0.81-0.99; LH OR = 0.81, 95%CI: 0.72-0.91), serum uric acid (LS/LH OR = 0.99, 95%CI: 0.99-0.99), and hip involvement (LS OR = 3.22, 95%CI: 1.71-6.05; LH OR = 8.03, 95%CI: 4.01-16.09) as common independent predictors for low BMD at both sites, while serum calcium (OR = 12.19, 95%CI: 1.44-103.25) was specific to LS. The developed nomograms, including web-based versions, demonstrated good discrimination (LS AUC: 0.77 training/0.73 validation; LH AUC: 0.82/0.85) and calibration. Decision curve analysis revealed significant net clinical benefit across probability thresholds (LS: 0.17-0.86 training/0.20-0.82 validation; LH: 0.15-0.92/0.27-0.91). The protective effect of BMI exhibited site-specific patterns: LS (low-TC: OR = 0.86; high-TC: OR = 0.77), LH (low-TC: OR = 0.77; mid-TC: OR = 0.74), with the most pronounced effect observed in the LS low-TG subgroup (OR = 0.79). SUA demonstrated consistent protective effects (LS/LH: OR = 0.95-0.99, all < 0.05), potentially independent of disease stage. Interaction analyses revealed that neither lipid levels nor disease stage significantly modified the effects of BMI and SUA (all interaction > 0.4).

CONCLUSION

This study developed clinical prediction models with excellent discriminative ability and substantial clinical utility for male patients with AS. These models offer rheumatologists an efficient tool to rapidly assess individual risks of low BMD, facilitating early diagnostic decision-making and enabling personalized interventions tailored to anatomical site-specific osteoporosis risks.

摘要

目的

本回顾性队列研究旨在开发并验证用于预测强直性脊柱炎(AS)男性患者特定部位低骨密度(BMD)风险的临床列线图模型。

方法

本研究纳入了2017年1月至2024年9月在江苏省中医院风湿科接受治疗的男性AS患者。总共322例符合条件的患者以7:3的比例随机分配到训练队列和验证队列。首先通过单因素逻辑回归(P<0.05)初步筛选腰椎(LS)和左髋(LH)低BMD的潜在预测因素,然后进行逐步双向多因素逻辑回归(纳入标准P<0.05)以确定每个解剖部位的独立预测因素。基于回归系数,我们开发了LS和LH低BMD的可视化列线图预测模型,并伴有交互式在线预测工具。对模型的区分度、校准度和临床实用性进行了综合评估。在确定主要预测因素后,进行探索性亚组分析以评估关键变量(BMI和血清尿酸)的效应异质性。

结果

本研究纳入了322例男性AS患者,随机分配到训练队列(n = 225)和验证队列(n = 97),基线特征均衡(所有P>0.05)。多因素逻辑回归确定发病年龄(LS:OR = 0.96,95%CI:0.93 - 0.99;LH:OR = 0.97,95%CI:0.95 - 0.99)、BMI(LS:OR = 0.90,95%CI:0.81 - 0.99;LH:OR = 0.81,95%CI:0.72 - 0.91)、血清尿酸(LS/LH:OR = 0.99,95%CI:0.99 - 0.99)和髋关节受累(LS:OR = 3.22,95%CI:1.71 - 6.05;LH:OR = 8.03,95%CI:4.01 - 16.09)是两个部位低BMD的常见独立预测因素,而血清钙(OR = 12.19,95%CI:1.44 - 103.25)是LS特有的预测因素。所开发的列线图,包括基于网络的版本,显示出良好的区分度(LS:训练集AUC为0.77/验证集为0.73;LH:AUC为0.82/0.85)和校准度。决策曲线分析显示在概率阈值范围内有显著的净临床获益(LS:训练集为0.17 - 0.86/验证集为0.20 - 0.82;LH:0.15 - 0.92/0.27 - 0.91)。BMI的保护作用表现出部位特异性模式:LS(低TC:OR = 0.86;高TC:OR = 0.77),LH(低TC:OR = 0.77;中TC:OR = 0.74),在LS低TG亚组中观察到的效应最明显(OR = 0.79)。SUA显示出一致的保护作用(LS/LH:OR = 0.95 - 0.99,所有P<0.05)),可能与疾病阶段无关。交互分析显示血脂水平和疾病阶段均未显著改变BMI和SUA的效应(所有交互作用P>0.4)。

结论

本研究为AS男性患者开发了具有出色区分能力和显著临床实用性的临床预测模型。这些模型为风湿病学家提供了一种有效的工具,可快速评估个体低BMD风险,有助于早期诊断决策,并能够针对解剖部位特异性骨质疏松风险进行个性化干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c9a/12098366/9b93778b617f/fmed-12-1549653-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验