Rousseau Fanny, Menier Catherine, Brochard Patricia, Simon Stéphanie, Perez-Toralla Karla, Wijkhuisen Anne
Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, Gif-sur-Yvette, France.
MAbs. 2025 Dec;17(1):2510336. doi: 10.1080/19420862.2025.2510336. Epub 2025 May 26.
Hybridomas, the first method for creating monoclonal antibodies (mAbs), were reported 50 years ago. This approach, which transformed biomedical research and laid the foundation for many of the current therapeutic, diagnostic, and research reagent applications of mAbs, is still used today, despite reported low fusion yields between short-lived B cells and immortal myeloma cells. To improve hybridoma production yields and accelerate development of new mAbs, we addressed two key limitations: 1) random pairing between myeloma cells and antibody-producing cells, and 2) low efficiency of the polyethylene-glycol-mediated fusion process. We first characterized and isolated antibody-secreting cells (ASCs) from the spleen of immunized mice before cell fusion to increase the probability of successive pairing between the most suitable cell fusion partners and favor the generation of functional hybridomas. Specifically, we developed an optimized workflow combining fluorescence-activated cell sorting with antibody secretion assays, using a panel of five cell-surface markers (CD3, TACI, CD138, MHC-II, and B220) to identify a distinct ASC subset with key characteristics. Such ASCs exhibited a plasmablast phenotype with high MHC-II expression and secreted high levels of antigen (Ag)-specific antibodies in immunized mice. We then implemented a cell electrofusion procedure adapted to low cell numbers (<10 cells), in order to perform the targeted electrofusion of TACICD138 sorted ASCs. This targeted approach yielded viable hybridomas in 100% of seeded culture wells compared to only 40% for the electrofusion of unsorted cells. In particular, over 60% of hybridomas generated from TACICD138 sorted ASCs secreted Ag-specific mAbs, including IgGs with high Ag binding affinity (<10 M). These results pave the way for a high-yield mAb production method via cell fusion, with the potential to streamline hybridoma generation and thereby expand access to mAbs.
杂交瘤技术作为第一种制备单克隆抗体(mAb)的方法,于50年前被报道。这种方法改变了生物医学研究,并为目前许多mAb的治疗、诊断和研究试剂应用奠定了基础,尽管有报道称短命的B细胞与永生的骨髓瘤细胞之间的融合率较低,但至今仍在使用。为了提高杂交瘤的产量并加速新型mAb的开发,我们解决了两个关键限制:1)骨髓瘤细胞与抗体产生细胞之间的随机配对;2)聚乙二醇介导的融合过程效率低下。我们首先在细胞融合前对免疫小鼠脾脏中的抗体分泌细胞(ASC)进行了表征和分离,以增加最合适的细胞融合伙伴之间连续配对的概率,并有利于产生功能性杂交瘤。具体而言,我们开发了一种优化的工作流程,将荧光激活细胞分选与抗体分泌检测相结合,使用一组五个细胞表面标志物(CD3、TACI、CD138、MHC-II和B220)来识别具有关键特征的独特ASC亚群。这些ASC表现出具有高MHC-II表达的浆母细胞表型,并在免疫小鼠中分泌高水平的抗原(Ag)特异性抗体。然后,我们实施了一种适用于低细胞数(<10个细胞)的细胞电融合程序,以便对TACICD138分选的ASC进行靶向电融合。与未分选细胞的电融合相比,这种靶向方法在100%的接种培养孔中产生了活的杂交瘤,而未分选细胞的电融合仅为40%。特别是,从TACICD138分选的ASC产生的杂交瘤中,超过60%分泌Ag特异性mAb,包括具有高Ag结合亲和力(<10 M)的IgG。这些结果为通过细胞融合高产mAb的生产方法铺平了道路,有可能简化杂交瘤的产生,从而扩大mAb的可及性。