Suppr超能文献

利用新型血栓生物标志物建立急性缺血性卒中早期神经功能恶化的预测模型

Predictive Model for Early Neurological Deterioration in Acute Ischemic Stroke Utilizing Novel Thrombotic Biomarkers.

作者信息

Zhao Yifei, Zhu Hao, Dai Changfei, Liu Wen, Yu Wenjin, Yan Bin, Ji Xiyang, Li Lin, Wei Dong, Li Zhaopan, Chen Ping

机构信息

Department of Neurology, Xianyang Hospital of Yan' an University, Xianyang, China.

Department of Neurology, The First People's Hospital of Xianyang, Xianyang, China.

出版信息

Brain Behav. 2025 May;15(5):e70577. doi: 10.1002/brb3.70577.

Abstract

BACKGROUND

Novel thrombotic molecular markers are significantly linked to acute ischemic stroke (AIS). However, the relationship between thrombin-antithrombin complex (TAT), tissue plasminogen activator-inhibitor complex (t-PAIC), plasmin-α2 plasmin inhibitor complex (PIC), thrombomodulin (TM), and early neurological deterioration (END) remains unclear. Therefore, we developed a prediction model for END based on these markers and evaluated its accuracy and clinical utility.

METHODS

Retrospective analysis of patients diagnosed with AIS in our hospital from 2023-2024. The above patients were divided into a training set (N = 577) and a test set (N = 246) in a 7:3 ratio. Least absolute shrinkage and selection of operator regression (LASSO) valid predictors were used. The coefficients of the predictors in logistic regression were used to develop a nomogram and to validate its differentiation, calibration, and clinical utility.

RESULTS

The prevalence of END in AIS patients was 24.3%. Predictors screened according to LASSO regression analysis included age, the National Institutes of Health Stroke Scale (NIHSS) score, t-PAIC, PIC, lymphocyte, and platelet. The resulting nomograms had the area under the curve (AUC) of 0.867 (95% CI, 0.834-0.9) and 0.825 (95% CI, 0.757-0.892) in the training and test sets, respectively, which had good differentiation. In addition, the calibration curve and decision curve analysis (DCA) showed that the model had good calibration and clinical utility.

CONCLUSION

A predictive model for END was developed using the serological markers t-PAIC (male >17.13 ng/mL;female >10.52 ng/mL), PIC >0.85 µg/mL, Lymph ≤ 3.2×10^9/L, NIHSS, age, and platelet. The model has significant predictive value for END occurrence in patients with AIS.

摘要

背景

新型血栓形成分子标志物与急性缺血性卒中(AIS)显著相关。然而,凝血酶 - 抗凝血酶复合物(TAT)、组织纤溶酶原激活物 - 抑制剂复合物(t - PAIC)、纤溶酶 - α2纤溶酶抑制剂复合物(PIC)、血栓调节蛋白(TM)与早期神经功能恶化(END)之间的关系仍不清楚。因此,我们基于这些标志物开发了一种END预测模型,并评估了其准确性和临床实用性。

方法

对2023年至2024年在我院诊断为AIS的患者进行回顾性分析。将上述患者按7:3的比例分为训练集(N = 577)和测试集(N = 246)。使用最小绝对收缩和选择算子回归(LASSO)筛选有效预测因子。逻辑回归中预测因子的系数用于建立列线图,并验证其区分度、校准度和临床实用性。

结果

AIS患者中END的患病率为24.3%。根据LASSO回归分析筛选出的预测因子包括年龄、美国国立卫生研究院卒中量表(NIHSS)评分、t - PAIC、PIC、淋巴细胞和血小板。所得列线图在训练集和测试集中的曲线下面积(AUC)分别为0.867(95%CI,0.834 - 0.9)和0.825(95%CI,0.757 - 0.892),具有良好的区分度。此外,校准曲线和决策曲线分析(DCA)表明该模型具有良好的校准度和临床实用性。

结论

使用血清学标志物t - PAIC(男性>17.13 ng/mL;女性>10.52 ng/mL)、PIC>0.85 µg/mL、淋巴细胞≤3.2×10^9/L、NIHSS、年龄和血小板建立了END预测模型。该模型对AIS患者END的发生具有显著预测价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bc5/12105653/1f01a0b7c1f5/BRB3-15-e70577-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验