Suppr超能文献

鉴别肝硬化的良性结节和肝细胞癌:基于扩散加权磁共振成像水抑制模式的影像组学分析

Differentiating benign and hepatocellular carcinoma cirrhotic nodules: radiomics analysis of water restriction patterns with diffusion MRI.

作者信息

Arian Arvin, Fotouhi Maryam, Samadi Khoshe Mehr Fardin, Setayeshpour Babak, Delazar Sina, Nahvijou Azin, Nasiri-Toosi Mohsen

机构信息

Cancer Research Center, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.

Advanced Diagnostic and Interventional Radiology Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.

出版信息

Br J Radiol. 2025 Jul 1;98(1171):1155-1164. doi: 10.1093/bjr/tqaf106.

Abstract

OBJECTIVES

Current study aimed to investigate radiomics features derived from 2-centre diffusion-MRI to differentiate benign and hepatocellular carcinoma (HCC) liver nodules.

METHODS

A total of 328 patients with 517 Liver Imaging Reporting and Data System (LI-RADS) 2-5 nodules were included. MR images were retrospectively collected from 3 T and 1.5 T MRI vendors. Lesions were categorized into 242 benign and 275 HCC based on follow-up imaging for LR-2,3 and pathology results for LR-4,5 nodules and randomly divided into training (80%) and test (20%) sets. Preprocessing included resampling and normalization. Radiomics features were extracted from lesion volume-of-interest (VOI) on diffusion images. Scanner variability was corrected using ComBat harmonization method followed by high-correlation filter, PCA filter, and LASSO to select important features. The best classifier model was selected by 10-fold cross-validation, and accuracy was assessed on the test dataset.

RESULTS

In total, 1434 features were extracted, and subsequent classifiers were constructed based on the 16 most important selected features. Notably, support-vector machine (SVM) demonstrated better performance in the test dataset in distinguishing between benign and HCC nodules, achieving an accuracy of 0.92, sensitivity of 0.94, and specificity of 0.86.

CONCLUSIONS

Utilizing diffusion-MRI radiomics, our study highlights the performance of SVM, trained on lesions' diffusivity characteristics, in distinguishing benign and HCC nodules, ensuring clinical potential. It is suggested that further evaluations be conducted on multicentre datasets to address harmonization challenges.

ADVANCES IN KNOWLEDGE

Integration of diffusion radiomics for monitoring water restriction patterns as tumour histopathological index, with machine learning models demonstrates potential for achieving a reliable noninvasive method to improve the current diagnostic criteria.

摘要

目的

本研究旨在探讨源自两中心扩散加权磁共振成像(diffusion-MRI)的影像组学特征,以鉴别肝脏良性结节与肝细胞癌(HCC)结节。

方法

共纳入328例患者的517个肝脏影像报告和数据系统(LI-RADS)2-5类结节。回顾性收集来自3T和1.5T磁共振成像设备的图像。根据LR-2、3类结节的随访影像以及LR-4、5类结节的病理结果,将病变分为242个良性结节和275个HCC结节,并随机分为训练集(80%)和测试集(20%)。预处理包括重采样和归一化。从扩散图像上的病变感兴趣区(VOI)提取影像组学特征。使用ComBat归一化方法校正扫描仪变异性,随后进行高相关性滤波、主成分分析(PCA)滤波和套索回归(LASSO)以选择重要特征。通过10折交叉验证选择最佳分类器模型,并在测试数据集上评估准确性。

结果

共提取1434个特征,并基于16个最重要的选定特征构建后续分类器。值得注意的是,支持向量机(SVM)在测试数据集中鉴别良性和HCC结节方面表现出更好的性能,准确率为0.92,灵敏度为0.94,特异性为0.86。

结论

利用扩散加权磁共振成像影像组学,本研究突出了基于病变扩散特征训练的支持向量机在鉴别良性和HCC结节方面的性能,具有临床应用潜力。建议对多中心数据集进行进一步评估,以应对归一化挑战。

知识进展

将用于监测水限制模式作为肿瘤组织病理学指标的扩散影像组学与机器学习模型相结合,显示出实现可靠的非侵入性方法以改进当前诊断标准的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验