Suppr超能文献

一种使用可解释机器学习技术的高侵袭性前列腺癌预后模型。

A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.

作者信息

Peng Cong, Gong Cheng, Zhang Xiaoya, Liu Duxian

机构信息

Department of Pathology, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.

出版信息

Front Med (Lausanne). 2025 May 12;12:1512870. doi: 10.3389/fmed.2025.1512870. eCollection 2025.

Abstract

BACKGROUND

Extremely aggressive prostate cancer, including subtypes like small cell carcinoma and neuroendocrine carcinoma, is associated with poor prognosis and limited treatment options. This study sought to create a robust, interpretable machine learning-based model that predicts 1-, 3-, and 5-year survival in patients with extremely aggressive prostate cancer. Additionally, we sought to pinpoint key prognostic factors and their clinical implications through an innovative method.

MATERIALS AND METHODS

This study retrospectively analyzed data from 1,620 patients with extremely aggressive prostate cancer in the SEER database (2000-2020). Feature selection was performed using the Boruta algorithm, and survival predictions were made using nine machine learning algorithms, including XGBoost, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), multilayer perceptron (MLP) and lightGBM. Model performance was evaluated using metrics such as AUC, accuracy (F1 score), confusion matrix, and decision curve analysis. Additionally, Shapley Additive Explanations (SHAP) were applied to interpret feature importance within the model, revealing the clinical factors that influence survival predictions.

RESULTS

Among the nine models, the lightGBM model exhibited the best performance, with an AUC and F1 score of (0.8, 0.809) for 1-year survival prediction, (0.809, 0.751) for 3-year survival prediction, and (0.773, 0.611) for 5-year survival prediction. SHAP analysis revealed that M stage was the most important feature for predicting 1- and 3-year survival, while PSA level had the greatest impact on 5-year survival predictions. The model demonstrated good clinical utility and predictive accuracy through decision curve analysis and confusion matrix.

CONCLUSION

The lightGBM model has good predictive power for survival in patients with extremely aggressive prostate cancer. By identifying key clinical factors and providing actionable predictions, the model has the potential to enhance prognostic accuracy and improve patient outcomes.

摘要

背景

侵袭性极强的前列腺癌,包括小细胞癌和神经内分泌癌等亚型,与预后不良及有限的治疗选择相关。本研究旨在创建一个强大的、可解释的基于机器学习的模型,以预测侵袭性极强的前列腺癌患者的1年、3年和5年生存率。此外,我们试图通过一种创新方法确定关键预后因素及其临床意义。

材料与方法

本研究回顾性分析了SEER数据库(2000 - 2020年)中1620例侵袭性极强的前列腺癌患者的数据。使用Boruta算法进行特征选择,并使用包括XGBoost、逻辑回归(LR)、支持向量机(SVM)、随机森林(RF)、k近邻(KNN)、决策树(DT)、弹性网络(Enet)、多层感知器(MLP)和lightGBM在内的九种机器学习算法进行生存预测。使用AUC、准确率(F1分数)、混淆矩阵和决策曲线分析等指标评估模型性能。此外,应用Shapley值加法解释(SHAP)来解释模型内的特征重要性,揭示影响生存预测的临床因素。

结果

在九个模型中,lightGBM模型表现最佳,1年生存预测的AUC和F1分数分别为(0.8,0.809),3年生存预测为(0.809,0.751),5年生存预测为(0.773,0.611)。SHAP分析显示,M分期是预测1年和3年生存的最重要特征,而PSA水平对5年生存预测影响最大。通过决策曲线分析和混淆矩阵,该模型显示出良好的临床实用性和预测准确性。

结论

lightGBM模型对侵袭性极强的前列腺癌患者的生存具有良好的预测能力。通过识别关键临床因素并提供可操作的预测,该模型有可能提高预后准确性并改善患者结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e74/12104253/cb8cdaa29a8b/fmed-12-1512870-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验