Suppr超能文献

用于评估越南与COVID-19相关参数的多维机器学习:验证研究

Multidimensional Machine Learning for Assessing Parameters Associated With COVID-19 in Vietnam: Validation Study.

作者信息

Nguyen Trong Tue, Ho Cam Tu, Bui Huong Thi Thu, Ho Lam Khanh, Ta Van Thanh

机构信息

Medical Laboratory Department, Hanoi Medical University, Hanoi, Vietnam.

Clinical Laboratory Department, Hanoi Medical University Hospital, Hanoi, Vietnam.

出版信息

JMIR Form Res. 2023 Feb 16;7:e42895. doi: 10.2196/42895.

Abstract

BACKGROUND

Machine learning (ML) is a type of artificial intelligence strategy. Its algorithms are used on big data sets to see patterns, learn from their results, and perform tasks autonomously without being instructed on how to address problems. New diseases like COVID-19 provide important data for ML. Therefore, all relevant parameters should be explicitly quantified and modeled.

OBJECTIVE

The purpose of this study was to determine (1) the overall preclinical characteristics, (2) the cumulative cutoff values and risk ratios (RRs), and (3) the factors associated with COVID-19 severity in unidimensional and multidimensional analyses involving 2173 SARS-CoV-2 patients.

METHODS

The study population consisted of 2173 patients (1587 mild status [mild group] and asymptomatic patients, 377 moderate status patients [moderate group], and 209 severe status patients [severe group]). The status of the patients was recorded from September 2021 to March 2022. Two correlation tests, relative risk, and RR were used to eliminate unbalanced parameters and select the most remarkable parameters. The independent methods of hierarchical cluster analysis and k-means were used to classify parameters according to their r values. Finally, network analysis provided a 3-dimensional view of the results.

RESULTS

COVID-19 severity was significantly correlated with age (mild-moderate group: RR 4.19, 95% CI 3.58-4.95; P<.001), scoring index of chest x-ray (mild-moderate group: RR 3.29, 95% CI 2.76-3.92; P<.001; moderate-severe group: RR 3.03, 95% CI 2.4023-3.8314; P<.001), percentage of neutrophils (mild-moderate group: RR 3.18, 95% CI 2.73-3.70; P<.001; moderate-severe group: RR 3.32, 95% CI 2.6480-4.1529; P<.001), quantity of neutrophils (moderate-severe group: RR 3.15, 95% CI 2.6153-3.8025; P<.001), albumin (moderate-severe group: RR 0.46, 95% CI 0.3650-0.5752; P<.001), C-reactive protein (mild-moderate group: RR 3.4, 95% CI 2.91-3.97; P<.001), and ratio of lymphocytes (moderate-severe group: RR 0.34, 95% CI 0.2743-0.4210; P<.001). Significant inversion of correlations among the severity groups is important. Alanine transaminase and leucocytes showed a significant negative correlation (r=-1; P<.001) in the mild group and a significant positive correlation in the moderate group (r=1; P<.001). Transferrin and anion Cl showed a significant positive correlation (r=1; P<.001) in the mild group and a significant negative correlation in the moderate group (r=-0.59; P<.001). The clustering and network analysis showed that in the mild-moderate group, the closest neighbors of COVID-19 severity were ferritin and age. C-reactive protein, scoring index of chest x-ray, albumin, and lactate dehydrogenase were the next closest neighbors of these 3 factors. In the moderate-severe group, the closest neighbors of COVID-19 severity were ferritin, fibrinogen, albumin, quantity of lymphocytes, scoring index of chest x-ray, white blood cell count, lactate dehydrogenase, and quantity of neutrophils.

CONCLUSIONS

This multidimensional study in Vietnam showed possible correlations between several elements and COVID-19 severity to provide clinical reference markers for surveillance and diagnostic management.

摘要

背景

机器学习(ML)是一种人工智能策略。其算法用于大数据集,以发现模式、从结果中学习并在无需指导如何解决问题的情况下自主执行任务。像新冠病毒病(COVID-19)这样的新疾病为机器学习提供了重要数据。因此,所有相关参数都应明确量化并建模。

目的

本研究的目的是确定:(1)总体临床前特征;(2)累积临界值和风险比(RRs);(3)在涉及2173例严重急性呼吸综合征冠状病毒2(SARS-CoV-2)患者的单维和多维分析中与COVID-19严重程度相关的因素。

方法

研究人群包括2173例患者(1587例轻症状态[轻症组]和无症状患者、377例中症状态患者[中症组]和209例重症状态患者[重症组])。患者状态记录于2021年9月至2022年3月。使用两种相关性检验、相对风险和RR来消除不平衡参数并选择最显著的参数。采用层次聚类分析和k均值的独立方法根据参数的r值对其进行分类。最后,网络分析提供了结果的三维视图。

结果

COVID-19严重程度与年龄显著相关(轻症-中症组:RR 4.19,95%置信区间[CI] 3.58 - 4.95;P <.001)、胸部X线评分指数(轻症-中症组:RR 3.29,95% CI 2.76 - 3.92;P <.001;中症-重症组:RR 3.03,95% CI 2.4023 - 3.8314;P <.001)、中性粒细胞百分比(轻症-中症组:RR 3.18,95% CI 2.73 - 3.70;P <.001;中症-重症组:RR 3.32,95% CI 2.6480 - 4.1529;P <.001)、中性粒细胞数量(中症-重症组:RR 3.15,95% CI 2.6153 - 3.8025;P <.001)、白蛋白(中症-重症组:RR 0.46,95% CI 0.3650 - 0.5752;P <.001)、C反应蛋白(轻症-中症组:RR 3.4,95% CI 2.91 - 3.97;P <.001)以及淋巴细胞比例(中症-重症组:RR 0.34,95% CI 0.2743 - 0.4210;P <.001)。严重程度组间相关性的显著反转很重要。谷丙转氨酶和白细胞在轻症组呈显著负相关(r = -1;P <.001),在中症组呈显著正相关(r = 1;P <.001)。转铁蛋白和阴离子Cl在轻症组呈显著正相关(r = 1;P <.001),在中症组呈显著负相关(r = -0.59;P <.001)。聚类和网络分析表明,在轻症-中症组中,与COVID-19严重程度最接近的相关因素是铁蛋白和年龄。C反应蛋白、胸部X线评分指数、白蛋白和乳酸脱氢酶是这3个因素的次近邻相关因素。在中症-重症组中,与COVID-19严重程度最接近的相关因素是铁蛋白、纤维蛋白原、白蛋白、淋巴细胞数量、胸部X线评分指数、白细胞计数、乳酸脱氢酶和中性粒细胞数量。

结论

越南的这项多维研究表明,多个因素与COVID-19严重程度之间可能存在相关性,可为监测和诊断管理提供临床参考指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f50/9937111/6c956472ddfb/formative_v7i1e42895_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验