Suppr超能文献

GDP-岩藻糖转运蛋白SLC35C1:在胞质GDP-岩藻糖和岩藻糖基化聚糖合成中的潜在调节作用。

GDP-fucose transporter SLC35C1: a potential regulatory role in cytosolic GDP-fucose and fucosylated glycan synthesis.

作者信息

Skurska Edyta, Olczak Mariusz

机构信息

Faculty of Biotechnology, University of Wroclaw, Poland.

出版信息

FEBS Open Bio. 2025 Aug;15(8):1336-1349. doi: 10.1002/2211-5463.70057. Epub 2025 May 27.

Abstract

Glycosylation occurs mainly in the Golgi apparatus, whereas the synthesis of nucleotide sugars occurs in the cytoplasm or nucleus. GDP-fucose in mammalian cells could be produced via de novo and salvage pathways in the cytoplasm; the first one is responsible for about 90% of GDP-fucose in the total pool of this nucleotide sugar in the cell. SLC35C1 (C1) is the primary transporter of GDP-fucose to the Golgi apparatus. In the absence of this transporter, it was proposed that nucleotide sugar could still reach the Golgi apparatus via a SLC35C2, the homologue of SLC35C1. However, simultaneous inactivation of the two transporters did not influence GDP-fucose transport across the Golgi apparatus membranes after external fucose supplementation. In this study, we combined the inactivation of SLC35C1 and enzymes of the GDP-fucose biosynthesis pathways (FCSK, GMDS and TSTA3) to study the impact of double inactivation on the production of nucleotide sugar and fucosylated glycans. We found that a lack of SLC35C1 changed the level of enzymes of both de novo and salvage pathways. Upon fucose supplementation, stimulation of the salvage pathway was remarkably high in the absence of the TSTA3 protein, and the concentration of GDP-fucose increased to millimolar values. In this work, we discovered that simultaneous deficiency of the SLC35C1 protein and TSTA3 enzyme increased GDP-fucose production via the salvage pathway to an even higher level. Finally, we found that nucleotide sugar still accessed the Golgi apparatus and had differential effects on N- and O-glycans.

摘要

糖基化主要发生在高尔基体中,而核苷酸糖的合成则发生在细胞质或细胞核中。哺乳动物细胞中的GDP-岩藻糖可通过细胞质中的从头合成途径和补救途径产生;前者在细胞内该核苷酸糖的总库中约占GDP-岩藻糖的90%。SLC35C1(C1)是GDP-岩藻糖转运至高尔基体的主要转运蛋白。在缺乏这种转运蛋白的情况下,有人提出核苷酸糖仍可通过SLC35C1的同源物SLC35C2到达高尔基体。然而,在补充外源岩藻糖后,同时失活这两种转运蛋白并不影响GDP-岩藻糖跨高尔基体膜的转运。在本研究中,我们将SLC35C1的失活与GDP-岩藻糖生物合成途径的酶(FCSK、GMDS和TSTA3)相结合,以研究双重失活对核苷酸糖和岩藻糖化聚糖产生的影响。我们发现,缺乏SLC35C1会改变从头合成途径和补救途径中酶的水平。在补充岩藻糖后,在缺乏TSTA3蛋白的情况下,补救途径的刺激作用非常显著,GDP-岩藻糖的浓度增加到毫摩尔水平。在这项工作中,我们发现SLC35C1蛋白和TSTA3酶的同时缺乏会通过补救途径将GDP-岩藻糖的产生提高到更高水平。最后,我们发现核苷酸糖仍然可以进入高尔基体,并且对N-聚糖和O-聚糖有不同的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43d9/12319708/ad1bb1822726/FEB4-15-1336-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验