From the Genome and Drug Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510.
the Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510.
J Biol Chem. 2010 Feb 5;285(6):4122-4129. doi: 10.1074/jbc.M109.016964. Epub 2009 Nov 30.
Notch is a transmembrane receptor that shares homology with proteins containing epidermal growth factor-like repeats and mediates the cell-cell interactions necessary for many cell fate decisions. In Drosophila, O-fucosyltransferase 1 catalyzes the O-fucosylation of these epidermal growth factor-like repeats. This O-fucose elongates, resulting in an O-linked tetrasaccharide that regulates the signaling activities of Notch. Fucosyltransferases utilize GDP-fucose, which is synthesized in the cytosol, but fucosylation occurs in the lumen of the endoplasmic reticulum (ER) and Golgi. Therefore, GDP-fucose uptake into the ER and Golgi is essential for fucosylation. However, although GDP-fucose biosynthesis is well understood, the mechanisms and intracellular routes of GDP-fucose transportation remain unclear. Our previous study on the Drosophila Golgi GDP-fucose transporter (Gfr), which specifically localizes to the Golgi, suggested that another GDP-fucose transporter(s) exists in Drosophila. Here, we identified Efr (ER GDP-fucose transporter), a GDP-fucose transporter that localizes specifically to the ER. Efr is a multifunctional nucleotide sugar transporter involved in the biosynthesis of heparan sulfate-glycosaminoglycan chains and the O-fucosylation of Notch. Comparison of the fucosylation defects in the N-glycans in Gfr and Efr mutants revealed that Gfr and Efr made distinct contributions to this modification; Gfr but not Efr was crucial for the fucosylation of N-glycans. We also found that Gfr and Efr function redundantly in the O-fucosylation of Notch, although they had different localizations and nucleotide sugar transportation specificities. These results indicate that two pathways for the nucleotide sugar supply, involving two nucleotide sugar transporters with distinct characteristics and distributions, contribute to the O-fucosylation of Notch.
Notch 是一种跨膜受体,与含有表皮生长因子样重复序列的蛋白质具有同源性,介导许多细胞命运决定所必需的细胞-细胞相互作用。在果蝇中,O-岩藻糖基转移酶 1 催化这些表皮生长因子样重复序列的 O-岩藻糖基化。这种 O-岩藻糖延长,导致调节 Notch 信号活性的 O-连接四糖。岩藻糖基转移酶利用 GDP-岩藻糖,它在细胞质中合成,但岩藻糖基化发生在内质网 (ER) 和高尔基体的腔中。因此,GDP-岩藻糖摄取到 ER 和高尔基体对于岩藻糖基化是必不可少的。然而,尽管 GDP-岩藻糖生物合成已得到很好的理解,但 GDP-岩藻糖运输的机制和细胞内途径仍不清楚。我们之前关于果蝇高尔基体 GDP-岩藻糖转运蛋白 (Gfr) 的研究表明,果蝇中存在另一种 GDP-岩藻糖转运蛋白。在这里,我们鉴定了 Efr(ER GDP-岩藻糖转运蛋白),一种特异性定位于 ER 的 GDP-岩藻糖转运蛋白。Efr 是一种多功能核苷酸糖转运蛋白,参与肝素硫酸糖胺聚糖链的生物合成和 Notch 的 O-岩藻糖基化。Gfr 和 Efr 突变体中 N-聚糖岩藻糖基化缺陷的比较表明,Gfr 和 Efr 对这种修饰有不同的贡献;Gfr 而不是 Efr 对 N-聚糖的岩藻糖基化至关重要。我们还发现 Gfr 和 Efr 在 Notch 的 O-岩藻糖基化中具有冗余功能,尽管它们具有不同的定位和核苷酸糖转运特异性。这些结果表明,涉及具有不同特征和分布的两种核苷酸糖转运蛋白的两种核苷酸糖供应途径有助于 Notch 的 O-岩藻糖基化。