Suppr超能文献

基于柔性轴拉伸-扭转协同驱动的仿生刚柔耦合连续体机器人的设计、建模与实验验证

Design, Modeling, and Experimental Validation of a Bio-Inspired Rigid-Flexible Continuum Robot Driven by Flexible Shaft Tension-Torsion Synergy.

作者信息

Dong Jiaxiang, Liu Quanquan, Li Peng, Wang Chunbao, Zhao Xuezhi, Hu Xiping

机构信息

School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.

Guangdong-Hong Kong-Macao Joint Laboratory, Artificial Intelligence Research Institute, Shenzhen MSU-BIT University, Shenzhen 518172, China.

出版信息

Biomimetics (Basel). 2025 May 8;10(5):301. doi: 10.3390/biomimetics10050301.

Abstract

This paper presents a bio-inspired rigid-flexible continuum robot driven by flexible shaft tension-torsion synergy, tackling the trade-off between actuation complexity and flexibility in continuum robots. Inspired by the muscular arrangement of octopus arms, enabling versatile multi-degree-of-freedom (DoF) movements, the robot achieves 6-DoF motion and 1-DoF gripper opening and closing movement with only six flexible shafts, simplifying actuation while boosting dexterity. A comprehensive kinetostatic model, grounded in Cosserat rod theory, is developed; this model explicitly incorporates the coupling between the spinal rods and flexible shafts, the distributed gravitational effects of spacer disks, and friction within the guide tubes. Experimental validation using a physical prototype reveals that accounting for spacer disk gravity diminishes the maximum shape prediction error from 20.56% to 0.60% relative to the robot's total length. Furthermore, shape perception experiments under no-load and 200 g load conditions show average errors of less than 2.01% and 2.61%, respectively. Performance assessments of the distal rigid joint showcased significant dexterity, including a 53° grasping range, 360° continuous rotation, and a pitching range from -40° to +45°. Successful obstacle avoidance and long-distance target reaching experiments further demonstrate the robot's effectiveness, highlighting its potential for applications in medical and industrial fields.

摘要

本文提出了一种受生物启发的刚柔连续体机器人,由柔性轴的拉伸 - 扭转协同驱动,解决了连续体机器人在驱动复杂性和灵活性之间的权衡问题。受章鱼臂肌肉排列的启发,能够实现多功能多自由度(DoF)运动,该机器人仅用六根柔性轴就实现了6自由度运动和1自由度夹爪开合运动,在提高灵活性的同时简化了驱动。基于柯塞尔特杆理论建立了一个综合的运动静力学模型;该模型明确纳入了脊柱杆与柔性轴之间的耦合、间隔盘的分布重力效应以及导管内的摩擦力。使用物理原型进行的实验验证表明,考虑间隔盘重力后,相对于机器人的总长度,最大形状预测误差从20.56%降至0.60%。此外,在空载和200 g负载条件下的形状感知实验显示平均误差分别小于2.01%和2.61%。远端刚性关节的性能评估展示了显著的灵活性,包括53°的抓取范围、360°的连续旋转以及 - 40°至 + 45°的俯仰范围。成功的避障和远距离目标到达实验进一步证明了该机器人的有效性,突出了其在医疗和工业领域的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d84/12109239/8cb6da834152/biomimetics-10-00301-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验