Behzadfar Mahtab, Karimpourfard Arsalan, Feng Yue
School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Department of Mechanical Engineering, Amirkabir University of Technology, Tehran 15914-35111, Iran.
Biomimetics (Basel). 2025 May 16;10(5):325. doi: 10.3390/biomimetics10050325.
This paper presents a data-driven framework for optimizing energy-efficient locomotion in a bio-inspired soft inchworm robot. Leveraging a feedforward neural network, the proposed approach accurately models the nonlinear relationships between actuation parameters (pressure, frequency) and environmental conditions (surface friction). The neural network achieves superior velocity prediction performance, with a coefficient of determination (R) of 0.9362 and a root mean squared error (RMSE) of 0.3898, surpassing previously reported models, including linear regression, LASSO, decision trees, and random forests. Particle Swarm Optimization (PSO) is integrated to maximize locomotion efficiency by optimizing the velocity-to-pressure ratio and adaptively minimizing input pressure for target velocities across diverse terrains. Experimental results demonstrate that the framework achieves an average 9.88% reduction in required pressure for efficient movement and a 6.45% reduction for stable locomotion, with the neural network enabling robust adaptation to varying surfaces. This dual optimization strategy ensures both energy savings and adaptive performance, advancing the deployment of soft robots in diverse environments.
本文提出了一种数据驱动的框架,用于优化受生物启发的软尺蠖机器人的节能运动。利用前馈神经网络,该方法准确地模拟了驱动参数(压力、频率)与环境条件(表面摩擦力)之间的非线性关系。神经网络实现了卓越的速度预测性能,决定系数(R)为0.9362,均方根误差(RMSE)为0.3898,超过了先前报道的模型,包括线性回归、套索回归、决策树和随机森林。集成粒子群优化(PSO)以通过优化速度与压力比并在不同地形上针对目标速度自适应地最小化输入压力来最大化运动效率。实验结果表明,该框架在高效运动时所需压力平均降低了9.88%,在稳定运动时降低了6.45%,神经网络能够实现对不同表面的稳健适应。这种双重优化策略确保了节能和自适应性能,推动了软机器人在各种环境中的部署。