Suppr超能文献

通过模拟到现实的迁移学习软微型机器人的多模态运动。

Learning Soft Millirobot Multimodal Locomotion with Sim-to-Real Transfer.

作者信息

Demir Sinan Ozgun, Tiryaki Mehmet Efe, Karacakol Alp Can, Sitti Metin

机构信息

Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.

Stuttgart Center for Simulation Science (SC SimTech), University of Stuttgart, 70569, Stuttgart, Germany.

出版信息

Adv Sci (Weinh). 2024 Aug;11(30):e2308881. doi: 10.1002/advs.202308881. Epub 2024 Jun 18.

Abstract

With wireless multimodal locomotion capabilities, magnetic soft millirobots have emerged as potential minimally invasive medical robotic platforms. Due to their diverse shape programming capability, they can generate various locomotion modes, and their locomotion can be adapted to different environments by controlling the external magnetic field signal. Existing adaptation methods, however, are based on hand-tuned signals. Here, a learning-based adaptive magnetic soft millirobot multimodal locomotion framework empowered by sim-to-real transfer is presented. Developing a data-driven magnetic soft millirobot simulation environment, the periodic magnetic actuation signal is learned for a given soft millirobot in simulation. Then, the learned locomotion strategy is deployed to the real world using Bayesian optimization and Gaussian processes. Finally, automated domain recognition and locomotion adaptation for unknown environments using a Kullback-Leibler divergence-based probabilistic method are illustrated. This method can enable soft millirobot locomotion to quickly and continuously adapt to environmental changes and explore the actuation space for unanticipated solutions with minimum experimental cost.

摘要

凭借无线多模态运动能力,磁性软微型机器人已成为潜在的微创医疗机器人平台。由于其多样的形状编程能力,它们可以产生各种运动模式,并且通过控制外部磁场信号,其运动可以适应不同的环境。然而,现有的适应方法基于手动调整的信号。在此,提出了一种基于学习的自适应磁性软微型机器人多模态运动框架,该框架由模拟到现实的迁移赋能。通过开发一个数据驱动的磁性软微型机器人模拟环境,在模拟中为给定的软微型机器人学习周期性磁驱动信号。然后,使用贝叶斯优化和高斯过程将学习到的运动策略部署到现实世界中。最后,展示了使用基于库尔贝克-莱布勒散度的概率方法对未知环境进行自动域识别和运动适应。这种方法可以使软微型机器人的运动快速且持续地适应环境变化,并以最小的实验成本探索驱动空间以寻找意外解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f365/11321659/713f3a67e234/ADVS-11-2308881-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验