Suppr超能文献

后缘的波纹增强了三维机翼在滑翔飞行中的空气动力学性能。

Corrugation at the Trailing Edge Enhances the Aerodynamic Performance of a Three-Dimensional Wing During Gliding Flight.

作者信息

Li Kaipeng, Xu Na, Zhong Licheng, Mou Xiaolei

机构信息

School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China.

School of Civil Engineering, Yantai University, Yantai 264005, China.

出版信息

Biomimetics (Basel). 2025 May 17;10(5):329. doi: 10.3390/biomimetics10050329.

Abstract

Dragonflies exhibit remarkable flight capabilities, and their wings feature corrugated structures that are distinct from conventional airfoils. This study investigates the aerodynamic effects of three corrugation parameters on gliding performance at a Reynolds number of 1350 and angles of attack ranging from 0° to 20°: (1) chordwise corrugation position, (2) linear variation in corrugation amplitude toward the trailing edge, and (3) the number of trailing-edge corrugations. The results show that when corrugation structures are positioned closer to the trailing edge, they generate localized vortices in the mid-forward region of the upper surface, thereby enhancing aerodynamic performance. Further studies show that a linear increase in corrugation amplitude toward the trailing edge significantly delays the shedding of the leading-edge vortex (LEV), produces a more coherent LEV, and reduces the number of vortices within the corrugation grooves on the lower surface. Consequently, the lift coefficient is maximized with an enhancement of 28.99%. Additionally, reducing the number of trailing-edge corrugations makes the localized vortices on the upper surface approach the trailing edge and merge into larger, more continuous LEVs. The vortices on the lower surface grooves also decrease in number, and the lift coefficient is maximally increased by 20.09%.

摘要

蜻蜓展现出卓越的飞行能力,其翅膀具有与传统翼型不同的波纹结构。本研究调查了在雷诺数为1350且攻角范围从0°到20°时,三个波纹参数对滑翔性能的空气动力学影响:(1)弦向波纹位置,(2)波纹幅度朝向后缘的线性变化,以及(3)后缘波纹的数量。结果表明,当波纹结构更靠近后缘定位时,它们会在上表面的中前部区域产生局部涡流,从而提高空气动力学性能。进一步研究表明,波纹幅度朝向后缘呈线性增加会显著延迟前缘涡(LEV)的脱落,产生更连贯的前缘涡,并减少下表面波纹槽内的涡旋数量。因此,升力系数最大化,提升了28.99%。此外,减少后缘波纹的数量会使上表面的局部涡流靠近后缘并合并成更大、更连续的前缘涡。下表面凹槽上的涡旋数量也会减少,升力系数最大增加20.09%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e258/12108921/7c56e22f8a73/biomimetics-10-00329-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验