Suppr超能文献

揭示集水动态液滴的空气动力学增强作用。

Unravelling the aerodynamic enhancement of water harvesting dynamic liquid bumps.

作者信息

Bai Haoyu, Sun He, Ye Zhihang, Li Zhe, Zhao Tianhong, Wang Xinsheng, Cheng Mingren, Wang Ziwei, Huang Shouying, Cao Moyuan

机构信息

School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.

School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Academy for Advanced Interdisciplinary Studies, Nankai University, Tianjin 300350, P. R. China.

出版信息

Mater Horiz. 2025 Aug 11;12(16):6217-6228. doi: 10.1039/d5mh00553a.

Abstract

Harvesting atmospheric water offers a sustainable solution to water scarcity in arid regions. While previous reports that proved the wettability of materials play a crucial role in the fog collection process, the underlying mechanism remains unclear. Despite the focus on convex-backed beetles, hydrophobic smooth-backed beetles like also efficiently harvest fog. Through comprehensive investigation, the enhancement of fog collection efficiency on hydrophobic surfaces was attributed to the 3D patterning process of microdroplets. Hydrophobic surfaces form dynamic liquid bumps that disturb airflow, improving the capture of tiny fog droplets. With a harp-like collector configuration, the superhydrophobic surface further enhances efficiency by 57% compared to superhydrophilic collectors. COMSOL Multiphysics simulations show that surfaces with stronger hydrophobicity and lower contact angle hysteresis intercept fog droplets more effectively. This work provides insights into the aerodynamic role of wettability in fog harvesting and offers guidelines for developing high-performance, bioinspired fog collectors with optimized material properties.

摘要

收集大气中的水为干旱地区的缺水问题提供了一种可持续的解决方案。虽然之前的报告证明材料的润湿性在雾收集过程中起着关键作用,但其潜在机制仍不清楚。尽管人们关注凸背甲虫,但像[未提及的疏水光滑背甲虫]这样的疏水光滑背甲虫也能有效地收集雾气。通过全面调查,疏水表面上雾收集效率的提高归因于微滴的三维图案化过程。疏水表面形成动态液体凸起,扰乱气流,从而改善对微小雾滴的捕获。采用竖琴状收集器配置,与超亲水收集器相比,超疏水表面的效率进一步提高了57%。COMSOL Multiphysics模拟表明,疏水性更强、接触角滞后更低的表面能更有效地拦截雾滴。这项工作深入了解了润湿性在雾收集中的空气动力学作用,并为开发具有优化材料特性的高性能、受生物启发的雾收集器提供了指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验