Zhu Yanping, Zhang Hanlei, Liu Meng, Pang Xiuhua
The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, China.
Microbiol Spectr. 2025 Jul;13(7):e0031825. doi: 10.1128/spectrum.00318-25. Epub 2025 May 27.
bacteria use volatile compounds for a range of functions, including communication and to kill competing species. We previously showed that the wild-type strain ISP5230 produces the alkaline volatile trimethylamine (TMA), which can completely rescue the morphological defects of the mutant strain MU-1, suggesting that TMA can have a significant impact on physiology. In this study, we further characterized strain MU-1 and elucidated the effects of alkaline volatiles on by comparing the transcriptomic data of the wild-type strain ISP5230 and strain MU-1. Our RNA-sequence analysis revealed that MU-1 exhibited differentially expressed genes (DEGs) in multiple categories, including genes involved in development, carbon metabolism, antibiotic production, and transport, and these data were verified by real-time PCR analysis. Using metabolomics analysis, we next showed that organic acids accumulated in MU-1, consistent with the acidification of the growth medium by MU-1. In addition, our quantitative analysis showed much higher residual glucose content in the growth medium of MU-1, suggesting inefficient consumption of glucose by this mutant. Notably, TMA exposure restored the normal expression pattern of the DEGs in MU-1, consistent with the ability of TMA to rescue the MU-1 phenotype, including morphology, acidification of the growth medium, glucose uptake, and antibiotic production; these findings indicated a global impact of TMA on physiology. In conclusion, our study suggests that the alkaline volatile TMA profoundly affects the physiology of and may promote the growth of mutants, enabling their survival in complex microbial communities.IMPORTANCEMicrobes produce a wide array of volatile compounds for which diverse biological roles have been implicated in microbial volatiles. In , the alkaline volatile trimethylamine (TMA) enables communication between cells, and in , TMA could also rescue the defective morphology of the mutant strain MU-1, indicating a broader impact of TMA on physiology. In this study, we identified differentially expressed genes (DEGs) in MU-1 and demonstrated that TMA exposure induced normal expression of these DEGs in the mutant strain to levels comparable with those in the wild-type strain, consistent with the ability of TMA to rescue the abnormal phenotype of this mutant. Our study expands the role of TMA to a global impact on the physiology of recipient cells and adds a new understanding of the importance of volatile compounds in microbial communities.
细菌利用挥发性化合物实现一系列功能,包括通讯以及杀灭竞争物种。我们之前表明,野生型菌株ISP5230会产生碱性挥发性三甲胺(TMA),它能够完全挽救突变菌株MU - 1的形态缺陷,这表明TMA可能对其生理机能有重大影响。在本研究中,我们进一步对菌株MU - 1进行了表征,并通过比较野生型菌株ISP5230和菌株MU - 1的转录组数据,阐明了碱性挥发物对其的影响。我们的RNA序列分析显示,MU - 1在多个类别中呈现差异表达基因(DEGs),包括参与发育、碳代谢、抗生素生产和转运的基因,并且这些数据通过实时PCR分析得到了验证。接下来,通过代谢组学分析,我们表明有机酸在MU - 1中积累,这与MU - 1导致生长培养基酸化一致。此外,我们的定量分析表明,MU - 1生长培养基中的残余葡萄糖含量要高得多,这表明该突变体对葡萄糖的消耗效率低下。值得注意的是,TMA处理恢复了MU - 1中DEGs的正常表达模式,这与TMA挽救MU - 1表型的能力一致,包括形态、生长培养基酸化、葡萄糖摄取和抗生素生产;这些发现表明TMA对其生理机能有全局性影响。总之,我们的研究表明碱性挥发性TMA深刻影响其生理机能,并且可能促进突变体的生长,使其能够在复杂的微生物群落中生存。重要性微生物产生各种各样的挥发性化合物,其在微生物挥发物中具有多种生物学作用。在其中,碱性挥发性三甲胺(TMA)能够实现细胞间通讯,并且在其中,TMA还能挽救突变菌株MU - 1的缺陷形态,这表明TMA对其生理机能有更广泛的影响。在本研究中,我们鉴定了MU - 1中的差异表达基因(DEGs),并证明TMA处理可诱导突变菌株中这些DEGs的正常表达,使其水平与野生型菌株相当,这与TMA挽救该突变体异常表型的能力一致。我们的研究将TMA的作用扩展到对受体细胞生理机能的全局性影响,并增加了对挥发性化合物在微生物群落中重要性的新认识。