Khamkure Sasirot, Gamero-Melo Prócoro, Reyes-Rosas Audberto, Zermeño-González Alejandro, Álvarez-Cruz José Luis, Albiter Escobar Elim, Moeller-Chávez Gabriela Eleonora, Bustos-Terrones Victoria
Departmento de Irrigación y Drenaje, Secihti- Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico.
Sustainability of Natural Resources and Energy, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo, Ramos Arizpe 25900, Mexico.
Gels. 2025 Apr 26;11(5):323. doi: 10.3390/gels11050323.
This study developed iron-oxide-functionalized carbon xerogels for enhanced arsenic adsorption to mitigate global water contamination. The composites were synthesized by integrating magnetite nanoparticles (15-20 nm) into a resorcinol-formaldehyde matrix via sol-gel polycondensation, followed by controlled pyrolysis. Key parameters-magnetite/resorcinol ratios (0.03-0.07), carbonization conditions (temperature, heating rate, duration), and HO-induced surface modification-were optimized to maximize adsorption performance. Characterization (SEM/EDX, XRD, FTIR, BET, TEM) confirmed uniform magnetite dispersion (~5 wt%) and revealed that pyrolysis at 850 °C enhanced porosity (378.8 m/g surface area) and refined surface chemistry. Adsorption kinetics followed Elovich (R = 0.9396) and Power Function (R = 0.9443) models, indicating chemisorption dominance. Response Surface Methodology optimized desorption parameters using a Central Composite Design with three factors and two center points with repetition. A kinetic study of As(V) desorption from carbon xerogels was conducted, yielding optimal conditions: 1.0 M KOH, 160 rpm agitation, and 90 min contact time. The adsorbent retained >88% regeneration efficiency over four cycles, demonstrating robust reusability. Synergistic effects of magnetite incorporation, tailored pyrolysis, and HO modification significantly improved arsenic selectivity and capacity in complex matrices, while enabling magnetic recovery.
本研究开发了用于增强砷吸附的氧化铁功能化碳干凝胶,以减轻全球水污染。通过溶胶 - 凝胶缩聚将磁铁矿纳米颗粒(15 - 20纳米)整合到间苯二酚 - 甲醛基质中,随后进行可控热解来合成复合材料。对关键参数——磁铁矿/间苯二酚比例(0.03 - 0.07)、碳化条件(温度、加热速率、持续时间)和羟基诱导的表面改性——进行了优化,以最大化吸附性能。表征(扫描电子显微镜/能谱仪、X射线衍射、傅里叶变换红外光谱、比表面积分析仪、透射电子显微镜)证实了磁铁矿的均匀分散(约5重量%),并表明在850℃下热解可提高孔隙率(表面积为378.8平方米/克)并改善表面化学性质。吸附动力学遵循埃洛维奇模型(R = 0.9396)和幂函数模型(R = 0.9443),表明化学吸附占主导。响应面法使用具有三个因素和两个重复中心点的中心复合设计优化了解吸参数。对碳干凝胶中砷(V)的解吸进行了动力学研究,得出最佳条件:1.0 M氢氧化钾、160转/分钟搅拌和90分钟接触时间。吸附剂在四个循环中保持了>88%的再生效率,显示出强大的可重复使用性。磁铁矿掺入、定制热解和羟基改性的协同效应显著提高了复杂基质中砷的选择性和吸附容量,同时实现了磁性回收。