Suppr超能文献

用于隔热和电磁波传输的氮化硅纳米颗粒增强氮化硅纳米纤维气凝胶

SiN Nanoparticle Reinforced SiN Nanofiber Aerogel for Thermal Insulation and Electromagnetic Wave Transmission.

作者信息

Tong Zongwei, Yan Xiangjie, Liu Yun, Zhao Yali, Li Kexun

机构信息

Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030619, China.

School of Material Science and Engineering, Tianjin University, Tianjin 300072, China.

出版信息

Gels. 2025 Apr 26;11(5):324. doi: 10.3390/gels11050324.

Abstract

Traditional nanoparticle aerogels suffer from inherent brittleness and thermal instability at elevated temperatures. In recent years, ceramic nanofiber aerogels, utilizing flexible nanofibers as structural units, have emerged as mechanically resilient alternatives with ultrahigh porosity (>90%). However, their thermal insulation capabilities are compromised by micron-scale pores (10-100 μm) and overdependence on ultralow density, which exacerbates mechanical fragility. This study pioneers a gas-phase self-assembly strategy to fabricate SiN nanoparticle reinforced SiN nanofiber aerogels (SNP-R-SNFA) with gradient pore architectures. By leveraging methyltrimethoxysilane/vinyltriethoxysilane composite aerogel (MVa) as a reactive template, we achieved spontaneous growth of SiN nanofiber films (SNP-R-SNF) featuring nanoparticle-fiber interpenetration and porosity gradients. The microstructure formation mechanism of SNP-R-SNF was analyzed using field-emission scanning electron microscopy. Layer assembly and hot-pressing composite technology were employed to prepare the SNP-R-SNFA, which showed low density (0.033 g/cm), exceptional compression resilience, insensitive frequency dependence of dielectric properties (ε' = 2.31-2.39, tan δ < 0.08 across 8-18 GHz). Infrared imaging displayed backside 893 °C cooler than front, demonstrating superior insulation performance. This study not only provides material solutions for integrated electromagnetic wave-transparent/thermal insulation applications but more importantly establishes an innovative paradigm for enhancing the mechanical robustness of nanofiber-based aerogels.

摘要

传统的纳米颗粒气凝胶具有固有的脆性,并且在高温下热稳定性较差。近年来,以柔性纳米纤维作为结构单元的陶瓷纳米纤维气凝胶已成为具有超高孔隙率(>90%)的机械弹性替代品。然而,它们的隔热能力受到微米级孔隙(10-100μm)的影响,并且过度依赖超低密度,这加剧了机械脆性。本研究开创了一种气相自组装策略,以制备具有梯度孔结构的SiN纳米颗粒增强SiN纳米纤维气凝胶(SNP-R-SNFA)。通过利用甲基三甲氧基硅烷/乙烯基三乙氧基硅烷复合气凝胶(MVa)作为反应模板,我们实现了具有纳米颗粒-纤维互穿和孔隙率梯度的SiN纳米纤维膜(SNP-R-SNF)的自发生长。使用场发射扫描电子显微镜分析了SNP-R-SNF的微观结构形成机制。采用层组装和热压复合技术制备了SNP-R-SNFA,其显示出低密度(0.033 g/cm)、出色的压缩弹性、介电性能对频率不敏感(ε' = 2.31-2.39,在8-18 GHz范围内tan δ < 0.08)。红外成像显示背面比正面低893°C,表明具有优异的隔热性能。本研究不仅为集成电磁波透明/隔热应用提供了材料解决方案,更重要的是建立了一种增强基于纳米纤维的气凝胶机械强度的创新范式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c639/12111509/4faeee57001c/gels-11-00324-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验