Fredes-García Diego, Jiménez-Rodríguez Javiera, Piña-Iturbe Alejandro, Caballero-Díaz Pablo, González-Villarroel Tamara, Dueñas Fernando, Wozniak Aniela, Adell Aiko D, Moreno-Switt Andrea I, García Patricia
Escuela de Medicina Veterinaria, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
Departamento de Laboratorios Clínicos, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
Microbiol Spectr. 2025 Jul;13(7):e0015925. doi: 10.1128/spectrum.00159-25. Epub 2025 May 27.
is a leading cause of foodborne illnesses globally, with significant mortality rates, especially among vulnerable populations. Traditional serotyping methods for are accurate but expensive, resource-intensive, and time-consuming, necessitating faster and more reliable alternatives. This study evaluates the IR Biotyper, a Fourier-transform infrared spectroscopy system, in differentiating serovars. We assessed 458 isolates of nine serovars (Infantis, Enteritidis, Typhimurium, I,4,[5],12:i:-, Montevideo, Agona, Thompson, Panama, and Abony) from diverse sources. The IR Biotyper was used to acquire spectra from these isolates. Machine learning algorithms, including support vector machines, were trained to classify the isolates. The accuracy of classifiers was validated using a validation set to determine sensitivity, specificity, positive predictive value, and negative predictive value. Initial classifiers showed high accuracy for Abony, Agona, Enteritidis, and Infantis serovars, with sensitivities close to 100%. However, classifiers for . Typhimurium, . Panama, and . Montevideo exhibited lower performance. Implementing a hierarchical classification system enhanced the accuracy of serogroup O:4 serovars, demonstrating that this approach offers a robust framework for serovar identification. The hierarchical system enables progressive refinement of classification, minimizing misclassifications by focusing on serogroup-specific features, making it adaptable to complex data sets and diverse serovars. The IR Biotyper demonstrates high potential for rapid and accurate serovar identification. This study supports its implementation as a cost-effective, high-throughput tool for pathogen typing, enhancing real-time epidemiological surveillance, and guiding treatment strategies for salmonellosis. This method establishes a robust and scalable framework for advancing serotyping practices across clinical, industrial, and public health domains by leveraging hierarchical classification.IMPORTANCEEarly and accurate identification of serovars is extremely important for epidemiological surveillance, public health, and food safety. Traditional serotyping is very successful but is laborious and costly. In this study, we demonstrate the promise of Fourier-transform infrared spectroscopy together with machine learning as a means for serotyping. Using hierarchical classification, we attain optimal serovar identification accuracy, particularly for challenging-to-type serogroups. Our findings recognize the IR Biotyper as a high-throughput, scalable pathogen typing solution that offers real-time data that can enable enhanced outbreak response and prevention of foodborne disease. The approach bridges the gap between traditional microbiological practice and sophisticated analytical technology, the path to more effective, cost-saving interventions in the clinical, industrial, and regulatory settings. Application of these technologies can significantly improve surveillance-control and Public Health outcomes.
是全球食源性疾病的主要病因,死亡率很高,尤其是在弱势群体中。传统的血清分型方法准确但昂贵、资源密集且耗时,因此需要更快、更可靠的替代方法。本研究评估了傅里叶变换红外光谱系统IR Biotyper在区分血清型方面的性能。我们评估了来自不同来源的9种血清型(婴儿型、肠炎型、鼠伤寒型、I,4,[5],12:i: -、蒙得维的亚型、阿哥纳型、汤普森型、巴拿马型和阿博尼型)的458株分离株。使用IR Biotyper获取这些分离株的光谱。包括支持向量机在内的机器学习算法被训练用于对分离株进行分类。使用验证集验证分类器的准确性,以确定敏感性、特异性、阳性预测值和阴性预测值。初始分类器对阿博尼型、阿哥纳型、肠炎型和婴儿型血清型显示出高准确性,敏感性接近100%。然而,鼠伤寒型、巴拿马型和蒙得维的亚型的分类器表现较差。实施分层分类系统提高了O:4血清群血清型的准确性,表明该方法为血清型鉴定提供了一个强大的框架。分层系统能够逐步完善分类,通过关注血清群特异性特征将错误分类降至最低,使其适用于复杂数据集和不同血清型。IR Biotyper在快速准确的血清型鉴定方面显示出巨大潜力。本研究支持将其作为一种具有成本效益的高通量病原体分型工具来实施,以加强实时流行病学监测并指导沙门氏菌病的治疗策略。该方法通过利用分层分类建立了一个强大且可扩展的框架,以推进临床、工业和公共卫生领域的血清分型实践。重要性早期准确鉴定血清型对于流行病学监测、公共卫生和食品安全极为重要。传统血清分型非常成功,但费力且成本高。在本研究中,我们证明了傅里叶变换红外光谱与机器学习作为血清分型手段的前景。通过使用分层分类,我们获得了最佳的血清型鉴定准确性,特别是对于难以分型的血清群。我们的研究结果认可IR Biotyper作为一种高通量、可扩展的病原体分型解决方案,它提供实时数据,能够加强疫情应对和预防食源性疾病。该方法弥合了传统微生物学实践与先进分析技术之间的差距,是在临床、工业和监管环境中实现更有效、节省成本干预措施的途径。这些技术的应用可以显著改善监测控制和公共卫生成果。