Suppr超能文献

揭开终极表情包秘诀:用于从r/Memes中识别顶级表情包模板的图像嵌入技术。

Unveiling the Ultimate Meme Recipe: Image Embeddings for Identifying Top Meme Templates from r/Memes.

作者信息

Sawicki Jan

机构信息

Faculty of Mathematics and Information Science, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland.

出版信息

J Imaging. 2025 Apr 23;11(5):132. doi: 10.3390/jimaging11050132.

Abstract

Meme analysis, particularly identifying top meme templates, is crucial for understanding digital culture, communication trends, and the spread of online humor, as memes serve as units of cultural transmission that shape public discourse. Tracking popular templates enables researchers to examine their role in social engagement, ideological framing, and viral dynamics within digital ecosystems. This study explored the viral nature of memes by analyzing a large dataset of over 1.5 million meme submissions from Reddit's r/memes subreddit, spanning from January 2021 to July 2024. The focus was on uncovering the most popular meme templates by applying advanced image processing techniques. Apart from building an overall understanding of the memesphere, the main contribution was a selection of top meme templates providing a recipe for the best meme template for the meme creators (memesters). Using Vision Transformer (ViT) models, visual features of memes were analyzed without the influence of text, and memes were grouped into 1000 clusters that represented distinct templates. By combining image captioning and keyword extraction methods, key characteristics of the templates were identified, highlighting those with the most visual consistency. A deeper examination of the most popular memes revealed that factors like timing, cultural relevance, and references to current events played a significant role in their virality. Although user identity had limited influence on meme success, a closer look at contributors revealed an interesting pattern of a bot account and two prominent users. Ultimately, the study pinpointed the ten most popular meme templates, many of which were based on pop culture, offering insights into what makes a meme likely to go viral in today's digital culture.

摘要

表情包分析,尤其是识别热门表情包模板,对于理解数字文化、传播趋势和网络幽默的传播至关重要,因为表情包作为文化传播的单位,塑造了公共话语。追踪流行模板使研究人员能够研究它们在数字生态系统中的社会参与、意识形态框架和病毒式传播动态中的作用。本研究通过分析来自Reddit的r/memes子版块的超过150万个表情包提交的大型数据集,探讨了表情包的病毒式传播特性,该数据集涵盖了2021年1月至2024年7月。重点是通过应用先进的图像处理技术来发现最受欢迎的表情包模板。除了对表情包领域有一个全面的了解外,主要贡献是挑选出了顶级表情包模板,为表情包创作者(表情包制作者)提供了制作最佳表情包模板的方法。使用视觉Transformer(ViT)模型,在不受文本影响的情况下分析表情包的视觉特征,并将表情包分为1000个代表不同模板的集群。通过结合图像字幕和关键词提取方法,确定了模板的关键特征,突出了那些视觉一致性最高的特征。对最受欢迎的表情包进行更深入的研究发现,时间、文化相关性和对时事的引用等因素在它们的传播中起着重要作用。虽然用户身份对表情包的成功影响有限,但仔细观察贡献者会发现一个有趣的模式,即一个机器人账户和两个知名用户。最终,该研究确定了十个最受欢迎的表情包模板,其中许多基于流行文化,为了解在当今数字文化中使表情包可能走红的因素提供了见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验