Suppr超能文献

多态模因:细粒度互联网模因感知。

PolyMeme: Fine-Grained Internet Meme Sensing.

机构信息

School of Electrical & Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.

Information Technologies Institute @ Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece.

出版信息

Sensors (Basel). 2024 Aug 23;24(17):5456. doi: 10.3390/s24175456.

Abstract

Internet memes are a special type of digital content that is shared through social media. They have recently emerged as a popular new format of media communication. They are often multimodal, combining text with images and aim to express humor, irony, sarcasm, or sometimes convey hatred and misinformation. Automatically detecting memes is important since it enables tracking of social and cultural trends and issues related to the spread of harmful content. While memes can take various forms and belong to different categories, such as image macros, memes with labeled objects, screenshots, memes with text out of the image, and funny images, existing datasets do not account for the diversity of meme formats, styles and content. To bridge this gap, we present the PolyMeme dataset, which comprises approximately 27 K memes from four categories. This was collected from Reddit and a part of it was manually labelled into these categories. Using the manual labels, deep learning networks were trained to classify the unlabelled images with an estimated error rate of 7.35%. The introduced meme dataset in combination with existing datasets of regular images were used to train deep learning networks (ResNet, ViT) on meme detection, exhibiting very high accuracy levels (98% on the test set). In addition, no significant gains were identified from the use of regular images containing text.

摘要

网络模因是一种通过社交媒体分享的特殊类型的数字内容。它们最近作为一种新的流行媒体传播形式出现。它们通常是多模态的,结合了文本和图像,旨在表达幽默、讽刺、讽刺,有时还传达仇恨和错误信息。自动检测模因很重要,因为它可以跟踪社会和文化趋势以及与有害内容传播相关的问题。虽然模因可以采用各种形式并属于不同的类别,如图像宏、带有标记对象的模因、屏幕截图、图像外的文本模因和有趣的图像,但现有的数据集并没有考虑到模因格式、风格和内容的多样性。为了弥补这一差距,我们提出了 PolyMeme 数据集,其中包含大约 27000 个来自四个类别的模因。这些数据是从 Reddit 上收集的,其中一部分被手动标记为这些类别。使用这些手动标签,深度学习网络被训练来对未标记的图像进行分类,估计错误率为 7.35%。引入的模因数据集与现有的常规图像数据集结合使用,对模因检测进行了深度学习网络(ResNet、ViT)的训练,在测试集上表现出非常高的准确率(98%)。此外,使用包含文本的常规图像并没有带来显著的收益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1425/11398073/9bc45182708c/sensors-24-05456-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验