Chen Junjia, Zhu Qing, Xie Bowen, Li Tianxing
College of Computer Science, Beijing University Of Technology, Beijing, 100124, China.
Department of Urology, Peking University Third Hospital, Beijing, 100191, China.
Med Biol Eng Comput. 2025 May 27. doi: 10.1007/s11517-025-03381-3.
Traditional computed tomography (CT) methods for 3D reconstruction face resolution limitations and require time-consuming post-processing workflows. While deep learning techniques improve the accuracy of segmentation, traditional voxel-based segmentation and surface reconstruction pipelines tend to introduce artifacts such as disconnected regions, topological inconsistencies, and stepped distortions. To overcome these challenges, we propose ToPoMesh, an end-to-end 3D mesh reconstruction deep learning framework for direct reconstruction of high-fidelity surface meshes from CT volume data. To address the existing problems, our approach introduces three core innovations: (1) accurate local and global shape modeling by preserving and enhancing local feature information through residual connectivity and self-attention mechanisms in graph convolutional networks; (2) an adaptive variant density (Avd) mesh de-pooling strategy, which dynamically optimizes the vertex distribution; (3) a topology modification module that iteratively prunes the error surfaces and boundary smoothing via variable regularity terms to obtain finer mesh surfaces. Experiments on the LiTS, MSD pancreas tumor, MSD hippocampus, and MSD spleen datasets demonstrate that ToPoMesh outperforms state-of-the-art methods. Quantitative evaluations demonstrate a 57.4% reduction in Chamfer distance (liver) and a 0.47% improvement in F-score compared to end-to-end 3D reconstruction methods, while qualitative results confirm enhanced fidelity for thin structures and complex anatomical topologies versus segmentation frameworks. Importantly, our method eliminates the need for manual post-processing, realizes the ability to reconstruct 3D meshes from images, and can provide precise guidance for surgical planning and diagnosis.
传统的用于三维重建的计算机断层扫描(CT)方法面临分辨率限制,并且需要耗时的后处理工作流程。虽然深度学习技术提高了分割的准确性,但传统的基于体素的分割和表面重建管道往往会引入诸如不连续区域、拓扑不一致和阶梯状失真等伪影。为了克服这些挑战,我们提出了ToPoMesh,这是一个端到端的三维网格重建深度学习框架,用于从CT体数据直接重建高保真表面网格。为了解决现有问题,我们的方法引入了三项核心创新:(1)通过图卷积网络中的残差连接和自注意力机制保留和增强局部特征信息,进行精确的局部和全局形状建模;(2)一种自适应变体密度(Avd)网格反池化策略,动态优化顶点分布;(3)一个拓扑修改模块,通过可变正则项迭代修剪误差表面并进行边界平滑,以获得更精细的网格表面。在LiTS、MSD胰腺肿瘤、MSD海马体和MSD脾脏数据集上的实验表明,ToPoMesh优于现有方法。定量评估表明,与端到端三维重建方法相比,倒角距离(肝脏)降低了57.4%,F分数提高了0.47%,而定性结果证实,与分割框架相比,薄结构和复杂解剖拓扑的保真度得到了提高。重要的是,我们的方法无需手动后处理,实现了从图像重建三维网格的能力,并可为手术规划和诊断提供精确指导。