Rana Ayush B, Horton Timothy M, Thakur Vijay S, Wang Dazhi, Thakur Varsha, Dalzell Molly, Freitas Juliano T, Gannamedi Durga Prasad, Ogobuiro Ifeanyichukwu, Bedogni Barbara, Gultekin Sakir H, Garrett Timothy J, Villarino Alejandro V, Lu Jun, Lombard David B, Shah Ashish H, Welford Scott M
Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA.
Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
Neuro Oncol. 2025 May 27. doi: 10.1093/neuonc/noaf128.
Metabolic reprogramming in glioblastoma (GBM) is a putative determinant of GBM subtype, malignant cell state and tumor-immune crosstalk. In the present study, we investigated how polyamine metabolic rewiring contributes to the malignant cell-intrinsic and microenvironment-dependent biological processes underpinning GBM subtype classification.
Liquid chromatography/tandem mass spectrometry (LC-MS/MS) was used for polyamine quantification in human and murine GBM tumors and cell lines. Through single-cell RNA sequencing, metabolic profiling and additional functional experiments, we dissect the malignant cell-intrinsic and paracrine signaling processes regulated by SAT1 (spermidine/spermine-N1-acetyltransferase1) and its product, N1-acetylspermidine.
We find that polyamine acetylation is elevated in human and murine GBM tumors and contributes to the classification of mesenchymal/plurimetabolic GBM through both regulation of tumor-cell intrinsic glucose metabolism and by facilitating metabolic crosstalk with tumor-associated macrophages/myeloid cells (TAMs). The impact of SAT1 on tumor cell metabolism is mediated, at least in part, by N1-acetylspermdine, the sole polyamine elevated in human and murine tumors. Furthermore, the relatively high levels of N1-acetylspermidine released by GBM is taken up by myeloid cells to promote intracellular polyamine flux, cellular respiration and migration. In vivo, both genetic disruption of polyamine acetylation and pharmacological inhibition of polyamine transport reduced myeloid cell infiltration and sensitized tumors to chemoradiation.
Collectively, the findings highlight a previously unidentified role for SAT1 and its product, N1-acetylspermidine, in bridging the metabolic activity of tumor cells and tumor-associated macrophages/myeloid cells (TAMs), together promoting mesenchymal/plurimetabolic states and therapeutic resistance in GBM.
胶质母细胞瘤(GBM)中的代谢重编程被认为是GBM亚型、恶性细胞状态和肿瘤-免疫相互作用的决定因素。在本研究中,我们调查了多胺代谢重排如何促进支持GBM亚型分类的恶性细胞内在和微环境依赖性生物学过程。
采用液相色谱/串联质谱(LC-MS/MS)对人和小鼠GBM肿瘤及细胞系中的多胺进行定量。通过单细胞RNA测序、代谢谱分析和其他功能实验,我们剖析了由SAT1(亚精胺/精胺-N1-乙酰转移酶1)及其产物N1-乙酰亚精胺调节的恶性细胞内在和旁分泌信号传导过程。
我们发现人和小鼠GBM肿瘤中的多胺乙酰化水平升高,并且通过调节肿瘤细胞内在葡萄糖代谢以及促进与肿瘤相关巨噬细胞/髓样细胞(TAM)的代谢串扰,对间充质/多代谢GBM的分类有贡献。SAT1对肿瘤细胞代谢的影响至少部分是由N1-乙酰亚精胺介导的,N1-乙酰亚精胺是人和小鼠肿瘤中唯一升高的多胺。此外,GBM释放的相对高水平的N1-乙酰亚精胺被髓样细胞摄取,以促进细胞内多胺通量、细胞呼吸和迁移。在体内,多胺乙酰化的基因破坏和多胺转运的药理学抑制均减少了髓样细胞浸润,并使肿瘤对放化疗敏感。
总的来说,这些发现突出了SAT1及其产物N1-乙酰亚精胺在连接肿瘤细胞和肿瘤相关巨噬细胞/髓样细胞(TAM)的代谢活性方面以前未被识别的作用,共同促进GBM中的间充质/多代谢状态和治疗抗性。