Suppr超能文献

对人类植入前胚胎细胞分化逻辑模型的深入探索。

Deep exploration of logical models of cell differentiation in human preimplantation embryos.

作者信息

Bolteau Mathieu, Messaoudi Célia, David Laurent, Bourdon Jérémie, Guziolowski Carito

机构信息

Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France.

Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France.

出版信息

NPJ Syst Biol Appl. 2025 May 27;11(1):57. doi: 10.1038/s41540-025-00537-7.

Abstract

The advent of single-cell transcriptomics (scRNA-seq) has provided unprecedented access to specific cell type signatures, including during transient developmental stages. One key expectation is to be able to model gene regulatory networks (GRNs) from the cell-type scRNA-seq signatures. However, most computed GRNs are static models and lack the ability to predict the effects of genetic or environmental perturbations. Here, we focus on the maturation process of the trophectoderm (TE), the outer layer of cells of human embryos, which is critical for their ability to attach to the endometrium. Addressing this challenge required overcoming two major limitations: (i) handling the search space generated by the high dimensionality of single-cell data, (ii) the lack of feasible perturbation data for certain biological systems, which limits validation or generation of dynamic models. To address these challenges, we created SCIBORG, a computational package designed to infer Boolean networks (BNs) of gene regulation by integrating single-cell transcriptomic data with prior knowledge networks. SCIBORG uses logic programming to manage the combinatorial explosion. It learns two distinct BN families for each of the two developmental stages studied (TE and mature TE) by identifying specific gene regulatory mechanisms. The comparison between these two BN families reveals different pathways, identifying potential key genes critical for trophectoderm maturation. In silico validation through cell classification into studied stages reveals balanced precision 67% - 73% for inferred BN families. We demonstrate that SCIBORG is a powerful tool that integrates the diversity between gene expression profiles of cells at two different stages of development in the construction of Boolean models.

摘要

单细胞转录组学(scRNA-seq)的出现为研究特定细胞类型特征提供了前所未有的途径,包括在短暂的发育阶段。一个关键期望是能够从细胞类型的scRNA-seq特征中构建基因调控网络(GRN)模型。然而,大多数计算得到的GRN都是静态模型,缺乏预测遗传或环境扰动影响的能力。在这里,我们关注滋养外胚层(TE)的成熟过程,TE是人类胚胎的外层细胞,对胚胎附着于子宫内膜的能力至关重要。应对这一挑战需要克服两个主要限制:(i)处理单细胞数据高维度产生的搜索空间,(ii)某些生物系统缺乏可行的扰动数据,这限制了动态模型的验证或生成。为了应对这些挑战,我们创建了SCIBORG,这是一个计算软件包,旨在通过将单细胞转录组数据与先验知识网络相结合来推断基因调控的布尔网络(BN)。SCIBORG使用逻辑编程来管理组合爆炸问题。它通过识别特定的基因调控机制,为所研究的两个发育阶段(TE和成熟TE)分别学习两个不同的BN家族。这两个BN家族之间的比较揭示了不同的途径,确定了对滋养外胚层成熟至关重要的潜在关键基因。通过将细胞分类到所研究阶段进行的计算机模拟验证显示,推断出的BN家族的平衡精度为67% - 73%。我们证明,SCIBORG是一个强大的工具,在构建布尔模型时整合了细胞在两个不同发育阶段的基因表达谱之间的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb03/12117111/6eae931ece45/41540_2025_537_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验