Suppr超能文献

为实现可持续生产对工业水泥球磨机能耗指标进行建模。

Modeling energy consumption indexes of an industrial cement ball mill for sustainable production.

作者信息

Chehreh Chelgani Saeed, Fatahi Rasoul, Pournazari Ali, Nasiri Hamid

机构信息

Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Swedish School of Mines, Luleå University of Technology, Luleå, Sweden.

Wallenberg Initiative Materials Science for Sustainability, Department of Civil, Environmental and Natural Resources Engineering, Swedish School of Mines, Luleå University of Technology, Luleå, Sweden.

出版信息

Sci Rep. 2025 May 27;15(1):18514. doi: 10.1038/s41598-025-03232-z.

Abstract

The total cement energy consumption is around 5% of global industrial energy usage. In cement plants, mills consume half of this energy for dry grinding particles. However, grinding in tumbling mills is a random process, and a maximum of 5% of this energy would be directly devoted to particle size reduction. Thus, understanding interactions between operation variables and the mill energy consumption factors would be essential for sustainable cement production and green transition. Surprisingly, few investigations were conducted to study the energy consumption indexes of cement mills. Using a conscious lab "CL" as an advanced AI structure for industrial-scale problems could facilitate such an understanding of interactions within cement mill variables and promote controlling energy consumption for sustainable production. To fill the gap, this study developed a CL by examining different AI models (Random Forest, Support Vector Regression, Convolutional Neural Network, extreme gradient boosting, CatBoost, and SHapley Additive exPlanations) for modeling energy consumption indexes of a close ball mill circuit in a cement plant to address the effectiveness of operating variables. Explainable AI modeling highlighted interactions and measured the effectiveness of operating variables on mill energy consumption indexes. The airlift current and separator variables ranked the most effective operating factors on the mill energy consumption indexes. CatBoost, as an advanced AI model, showed the highest prediction accuracy for modeling (R: 0.90). Such a CL model for a cement mill can be used for training operators, controlling the process, saving time and energy, reducing laboratory work, and scaling issues, and finally enhancing sustainability.

摘要

水泥行业的总能源消耗约占全球工业能源使用量的5%。在水泥厂中,磨机消耗了其中一半的能源用于干磨颗粒。然而,在滚筒磨机中研磨是一个随机过程,其中最多5%的能源会直接用于减小颗粒尺寸。因此,了解操作变量与磨机能耗因素之间的相互作用对于水泥的可持续生产和绿色转型至关重要。令人惊讶的是,很少有研究对水泥磨机的能耗指标进行研究。使用有意识实验室(CL)作为解决工业规模问题的先进人工智能结构,可以促进对水泥磨机变量之间相互作用的理解,并推动为可持续生产控制能耗。为了填补这一空白,本研究通过检验不同的人工智能模型(随机森林、支持向量回归、卷积神经网络、极端梯度提升、CatBoost和SHapley加性解释)开发了一个CL,用于对水泥厂中闭路球磨机回路的能耗指标进行建模,以研究操作变量的有效性。可解释人工智能建模突出了相互作用,并测量了操作变量对磨机能耗指标的有效性。气升电流和分离器变量在磨机能耗指标方面是最有效的操作因素。作为一种先进的人工智能模型,CatBoost在建模方面显示出最高的预测准确率(R:0.90)。这种用于水泥磨机的CL模型可用于培训操作员、控制过程、节省时间和能源、减少实验室工作以及解决规模问题,最终提高可持续性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d86/12117027/930949a09e7a/41598_2025_3232_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验