Suppr超能文献

通过模糊挖掘器,利用流程挖掘技术监测二级医疗保健服务中的患者路径。

Monitoring patient pathways at a secondary healthcare services through process mining via Fuzzy Miner.

作者信息

Özdağoğlu Güzin, Damar Muhammet, Erenay Fatih Safa, Turhan Damar Hale, Himmetoğlu Osman, Pinto Andrew David

机构信息

Department of Business Administration, Faculty of Business, Dokuz Eylul University, İzmir, Türkiye.

Computer Science Deapartment, ScienceFaculty, Dokuz Eylul University, Buca, İzmir, Türkiye.

出版信息

BMC Med Inform Decis Mak. 2025 May 27;25(1):199. doi: 10.1186/s12911-025-03016-5.

Abstract

BACKGROUND

This study explored workflow pathways followed by patients seeking secondary healthcare services at a local hospital in a rural part of Turkey using process mining to improve hospital resource management.

METHODS

The study used process mining to discover process flows as patient pathways implied by hospital records for in-patient, out-patient, biochemical laboratory, and radiology services. Utilizing its flexibility, visualizations and robustness, authors implemented fuzzy-miner algorithm. First, we processed the relevant data from patient records. Then, this data was transformed into event and activity logs. Subsequently, all data components were collected into a data warehouse, and the process mining algorithm was applied. The process mining specified resource usage levels and workload, service waiting times, associated bottlenecks in hospital services, and related statistics/measures.

RESULTS

The results from the proposed process mining analysis offer insights and decision support to improve hospital resource management. For example, the resulting statistics indicate the high waiting times (e.g., median of waiting times around 2 h within the selected time period) in the General Surgery and Cardiology services, whose resources were highly utilized (2,699 and 6,162 times). Overloads at laboratories and radiological imaging seem to be contributing to these long waiting times, and capacities for the associated services may need to be improved. Waiting times and resource workloads are higher on specific dates related to local commercial and social activities.

CONCLUSIONS

Process mining successfully identified the real work flows, bottlenecks, and long waiting times at services within the considered local hospital and provided insights to the hospital management for improving their practices. Moreover, the analyses revealed unique challenges in providing care at a local hospital located far from the city center, emphasizing the potential of process mining to improve healthcare delivery tailored to the specific hospital environment.

CLINICAL TRIAL NUMBER

Not applicable.

摘要

背景

本研究利用流程挖掘来改善医院资源管理,探索了土耳其农村地区一家当地医院中寻求二级医疗服务的患者所遵循的工作流程路径。

方法

该研究使用流程挖掘来发现住院、门诊、生化实验室和放射科服务的医院记录所隐含的患者流程作为流程流。作者利用其灵活性、可视化和稳健性,实施了模糊挖掘算法。首先,我们处理了患者记录中的相关数据。然后,这些数据被转换为事件和活动日志。随后,所有数据组件被收集到一个数据仓库中,并应用了流程挖掘算法。流程挖掘指定了资源使用水平和工作量、服务等待时间、医院服务中的相关瓶颈以及相关统计数据/指标。

结果

所提出的流程挖掘分析结果为改善医院资源管理提供了见解和决策支持。例如,结果统计表明普通外科和心脏病科服务的等待时间较长(例如,在选定时间段内等待时间中位数约为2小时),其资源被高度利用(分别为2699次和6162次)。实验室和放射成像的过载似乎导致了这些较长的等待时间,相关服务的能力可能需要提高。在与当地商业和社会活动相关的特定日期,等待时间和资源工作量更高。

结论

流程挖掘成功识别了所考虑的当地医院内各服务的实际工作流程、瓶颈和较长的等待时间,并为医院管理层改进其做法提供了见解。此外,分析揭示了在远离市中心的当地医院提供护理方面的独特挑战,强调了流程挖掘在改善针对特定医院环境的医疗服务提供方面的潜力。

临床试验编号

不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8790/12117757/326e56491bc4/12911_2025_3016_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验