Garitano Nerea, Aguado-Alvaro Laura Pilar, Pelacho Beatriz
Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain.
Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
Biomedicines. 2025 May 11;13(5):1170. doi: 10.3390/biomedicines13051170.
Fibrosis is a pathological process characterized by excessive extracellular matrix (ECM) deposition, leading to tissue stiffening and organ dysfunction. It is a major contributor to chronic diseases affecting various organs, with limited therapeutic options available. Among the different forms of fibrosis, cardiac fibrosis is particularly relevant due to its impact on cardiovascular diseases (CVDs), which remain the leading cause of morbidity and mortality worldwide. This process is driven by activated cardiac fibroblasts (CFs), which promote ECM accumulation in response to chronic stressors. Epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, are key regulators of fibroblast activation and fibrotic gene expression. Enzymes such as DNA methyltransferases (DNMTs), histone methyltransferases (HMTs), histone acetyltransferases (HATs), and histone deacetylases (HDACs) have emerged as potential therapeutic targets, and epigenetic inhibitors have shown promise in modulating these enzymes to attenuate fibrosis by controlling fibroblast function and ECM deposition. These small-molecule compounds offer advantages such as reversibility and precise temporal control, making them attractive candidates for therapeutic intervention. This review aims to provide a comprehensive overview of the mechanisms by which epigenetic regulators influence cardiac fibrosis and examines the latest advances in preclinical epigenetic therapies. By integrating recent data from functional studies, single-cell profiling, and drug development, it highlights key molecular targets, emerging therapeutic strategies, and current limitations, offering a critical framework to guide future research and clinical translation.
纤维化是一种病理过程,其特征是细胞外基质(ECM)过度沉积,导致组织硬化和器官功能障碍。它是影响各个器官的慢性疾病的主要促成因素,而可用的治疗选择有限。在不同形式的纤维化中,心脏纤维化因其对心血管疾病(CVD)的影响而尤为重要,心血管疾病仍然是全球发病和死亡的主要原因。这个过程由活化的心脏成纤维细胞(CF)驱动,这些细胞在慢性应激源的作用下促进ECM积累。表观遗传机制,包括DNA甲基化、组蛋白修饰和染色质重塑,是成纤维细胞活化和纤维化基因表达的关键调节因子。诸如DNA甲基转移酶(DNMT)、组蛋白甲基转移酶(HMT)、组蛋白乙酰转移酶(HAT)和组蛋白去乙酰化酶(HDAC)等酶已成为潜在的治疗靶点,表观遗传抑制剂已显示出通过控制成纤维细胞功能和ECM沉积来调节这些酶以减轻纤维化的前景。这些小分子化合物具有可逆性和精确的时间控制等优点,使其成为治疗干预的有吸引力的候选药物。本综述旨在全面概述表观遗传调节因子影响心脏纤维化的机制,并研究临床前表观遗传治疗的最新进展。通过整合功能研究、单细胞分析和药物开发的最新数据,它突出了关键分子靶点、新兴治疗策略和当前局限性,提供了一个关键框架来指导未来的研究和临床转化。
Biomedicines. 2025-5-11
Int J Mol Sci. 2024-5-30
Cell Signal. 2013-12-7
Front Cardiovasc Med. 2022-5-6
Cancer Treat Rev. 2013-7-5
Pharmaceuticals (Basel). 2024-10-10
Biochim Biophys Acta Mol Basis Dis. 2017-5-10
J Nanobiotechnology. 2024-12-18
Signal Transduct Target Ther. 2024-11-26
NPJ Regen Med. 2024-11-15
Int J Nanomedicine. 2024
Pharmaceutics. 2024-5-9
J Am Coll Cardiol. 2023-12-19
Nat Rev Mol Cell Biol. 2024-4