Suppr超能文献

水生生物多样性研究中的人工智能:基于PRISMA的系统评价

Artificial Intelligence in Aquatic Biodiversity Research: A PRISMA-Based Systematic Review.

作者信息

Miller Tymoteusz, Michoński Grzegorz, Durlik Irmina, Kozlovska Polina, Biczak Paweł

机构信息

Institute of Marine and Environmental Sciences, University of Szczecin, 71-415 Szczecin, Poland.

Polish Society of Bioinformatics and Data Science, Biodata, 71-214 Szczecin, Poland.

出版信息

Biology (Basel). 2025 May 8;14(5):520. doi: 10.3390/biology14050520.

Abstract

Freshwater ecosystems are increasingly threatened by climate change and anthropogenic activities, necessitating innovative and scalable monitoring solutions. Artificial intelligence (AI) has emerged as a transformative tool in aquatic biodiversity research, enabling automated species identification, predictive habitat modeling, and conservation planning. This systematic review follows the PRISMA framework to analyze AI applications in freshwater biodiversity studies. Using a structured literature search across Scopus, Web of Science, and Google Scholar, we identified 312 relevant studies published between 2010 and 2024. This review categorizes AI applications into species identification, habitat assessment, ecological risk evaluation, and conservation strategies. A risk of bias assessment was conducted using QUADAS-2 and RoB 2 frameworks, highlighting methodological challenges, such as measurement bias and inconsistencies in the model validation. The citation trends demonstrate exponential growth in AI-driven biodiversity research, with leading contributions from China, the United States, and India. Despite the growing use of AI in this field, this review also reveals several persistent challenges, including limited data availability, regional imbalances, and concerns related to model generalizability and transparency. Our findings underscore AI's potential in revolutionizing biodiversity monitoring but also emphasize the need for standardized methodologies, improved data integration, and interdisciplinary collaboration to enhance ecological insights and conservation efforts.

摘要

淡水生态系统正日益受到气候变化和人为活动的威胁,因此需要创新且可扩展的监测解决方案。人工智能(AI)已成为水生生物多样性研究中的变革性工具,可实现物种自动识别、预测栖息地建模和保护规划。本系统综述遵循PRISMA框架,分析人工智能在淡水生物多样性研究中的应用。通过在Scopus、科学网和谷歌学术上进行结构化文献检索,我们识别出了2010年至2024年间发表的312项相关研究。本综述将人工智能应用分为物种识别、栖息地评估、生态风险评估和保护策略。使用QUADAS - 2和RoB 2框架进行了偏倚风险评估,突出了方法学挑战,如测量偏倚和模型验证中的不一致性。引文趋势表明人工智能驱动的生物多样性研究呈指数增长,中国、美国和印度做出了主要贡献。尽管人工智能在该领域的应用日益广泛,但本综述也揭示了一些持续存在的挑战,包括数据可用性有限、区域不平衡以及与模型通用性和透明度相关的问题。我们的研究结果强调了人工智能在革新生物多样性监测方面的潜力,但也强调了需要标准化方法、改进数据整合以及跨学科合作以增强生态洞察力和保护工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5130/12109572/94cff717e2dd/biology-14-00520-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验