Suppr超能文献

人工智能驱动的心理健康护理数字干预措施的范围综述:梳理筛查、支持、监测、预防及临床教育方面的应用

A Scoping Review of AI-Driven Digital Interventions in Mental Health Care: Mapping Applications Across Screening, Support, Monitoring, Prevention, and Clinical Education.

作者信息

Ni Yang, Jia Fanli

机构信息

School of International and Public Affairs, Columbia University, New York, NY 10027, USA.

Department of Psychology, Seton Hall University, South Orange, NJ 07079, USA.

出版信息

Healthcare (Basel). 2025 May 21;13(10):1205. doi: 10.3390/healthcare13101205.

Abstract

BACKGROUND/OBJECTIVES: Artificial intelligence (AI)-enabled digital interventions are increasingly used to expand access to mental health care. This PRISMA-ScR scoping review maps how AI technologies support mental health care across five phases: pre-treatment (screening), treatment (therapeutic support), post-treatment (monitoring), clinical education, and population-level prevention.

METHODS

We synthesized findings from 36 empirical studies published through January 2024 that implemented AI-driven digital tools, including large language models (LLMs), machine learning (ML) models, and conversational agents. Use cases include referral triage, remote patient monitoring, empathic communication enhancement, and AI-assisted psychotherapy delivered via chatbots and voice agents.

RESULTS

Across the 36 included studies, the most common AI modalities included chatbots, natural language processing tools, machine learning and deep learning models, and large language model-based agents. These technologies were predominantly used for support, monitoring, and self-management purposes rather than as standalone treatments. Reported benefits included reduced wait times, increased engagement, and improved symptom tracking. However, recurring challenges such as algorithmic bias, data privacy risks, and workflow integration barriers highlight the need for ethical design and human oversight.

CONCLUSION

By introducing a four-pillar framework, this review offers a comprehensive overview of current applications and future directions in AI-augmented mental health care. It aims to guide researchers, clinicians, and policymakers in developing safe, effective, and equitable digital mental health interventions.

摘要

背景/目标:借助人工智能(AI)的数字干预措施越来越多地被用于扩大心理健康护理的可及性。本系统综述的系统综述(PRISMA-ScR)绘制了人工智能技术如何在五个阶段支持心理健康护理:治疗前(筛查)、治疗中(治疗支持)、治疗后(监测)、临床教育和人群层面的预防。

方法

我们综合了截至2024年1月发表的36项实证研究的结果,这些研究实施了人工智能驱动的数字工具,包括大语言模型(LLMs)、机器学习(ML)模型和对话代理。用例包括转诊分诊、远程患者监测、增强共情沟通以及通过聊天机器人和语音代理提供的人工智能辅助心理治疗。

结果

在纳入的36项研究中,最常见的人工智能模式包括聊天机器人、自然语言处理工具、机器学习和深度学习模型以及基于大语言模型的代理。这些技术主要用于支持、监测和自我管理目的,而非作为独立的治疗方法。报告的益处包括缩短等待时间、提高参与度和改善症状跟踪。然而,诸如算法偏差、数据隐私风险和工作流程整合障碍等反复出现的挑战凸显了道德设计和人工监督的必要性。

结论

通过引入一个四支柱框架,本综述全面概述了人工智能增强心理健康护理的当前应用和未来方向。它旨在指导研究人员、临床医生和政策制定者开发安全、有效和公平的数字心理健康干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce86/12110772/51cc72e84710/healthcare-13-01205-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验