Suppr超能文献

试验筛选器:用于PICO、荟萃分析和药物再利用的综合生物医学信息提取框架。

TrialSieve: A Comprehensive Biomedical Information Extraction Framework for PICO, Meta-Analysis, and Drug Repurposing.

作者信息

Kartchner David, Turner Haydn, Ye Christophe, Al-Hussaini Irfan, Nursal Batuhan, Lee Albert J B, Deng Jennifer, Curtis Courtney, Cho Hannah, Duvaris Eva L, Jackson Coral, Shanks Catherine E, Tan Sarah Y, Ramalingam Selvi, Mitchell Cassie S

机构信息

Laboratory for Pathology Dynamics, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA 30332, USA.

Center for Machine Learning at Georgia Tech, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

Bioengineering (Basel). 2025 May 2;12(5):486. doi: 10.3390/bioengineering12050486.

Abstract

This work introduces TrialSieve, a novel framework for biomedical information extraction that enhances clinical meta-analysis and drug repurposing. By extending traditional PICO (Patient, Intervention, Comparison, Outcome) methodologies, TrialSieve incorporates hierarchical, treatment group-based graphs, enabling more comprehensive and quantitative comparisons of clinical outcomes. TrialSieve was used to annotate 1609 PubMed abstracts, 170,557 annotations, and 52,638 final spans, incorporating 20 unique annotation categories that capture a diverse range of biomedical entities relevant to systematic reviews and meta-analyses. The performance (accuracy, precision, recall, F1-score) of four natural-language processing (NLP) models (BioLinkBERT, BioBERT, KRISSBERT, PubMedBERT) and the large language model (LLM), GPT-4o, was evaluated using the human-annotated TrialSieve dataset. BioLinkBERT had the best accuracy (0.875) and recall (0.679) for biomedical entity labeling, whereas PubMedBERT had the best precision (0.614) and F1-score (0.639). Error analysis showed that NLP models trained on noisy, human-annotated data can match or, in most cases, surpass human performance. This finding highlights the feasibility of fully automating biomedical information extraction, even when relying on imperfectly annotated datasets. An annotator user study (n = 39) revealed significant ( < 0.05) gains in efficiency and human annotation accuracy with the unique TrialSieve tree-based annotation approach. In summary, TrialSieve provides a foundation to improve automated biomedical information extraction for frontend clinical research.

摘要

这项工作介绍了TrialSieve,这是一种用于生物医学信息提取的新颖框架,可增强临床荟萃分析和药物重新利用。通过扩展传统的PICO(患者、干预措施、对照、结果)方法,TrialSieve纳入了基于治疗组的分层图,从而能够对临床结果进行更全面和定量的比较。TrialSieve被用于注释1609篇PubMed摘要、170557条注释和52638个最终跨度,纳入了20个独特的注释类别,这些类别涵盖了与系统评价和荟萃分析相关的各种生物医学实体。使用人工注释的TrialSieve数据集评估了四种自然语言处理(NLP)模型(BioLinkBERT、BioBERT、KRISSBERT、PubMedBERT)和大语言模型(LLM)GPT-4o的性能(准确率、精确率、召回率、F1分数)。BioLinkBERT在生物医学实体标注方面具有最佳的准确率(0.875)和召回率(0.679),而PubMedBERT具有最佳的精确率(0.614)和F1分数(0.639)。错误分析表明,在有噪声的人工注释数据上训练的NLP模型能够达到或在大多数情况下超过人类的性能。这一发现突出了完全自动化生物医学信息提取的可行性,即使依赖于注释不完美的数据集。一项注释者用户研究(n = 39)表明,独特的基于TrialSieve树的注释方法在效率和人工注释准确性方面有显著(<0.05)提高。总之,TrialSieve为改进前端临床研究的自动化生物医学信息提取提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6503/12109152/6039202bc8f0/bioengineering-12-00486-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验