Suppr超能文献

接受胸腔镜消融治疗患者的无监督聚类识别出晚期心房颤动的相关表型。

Unsupervised Clustering of Patients Undergoing Thoracoscopic Ablation Identifies Relevant Phenotypes for Advanced Atrial Fibrillation.

作者信息

Meijer Ilse, Terpstra Marc M, Camara Oscar, Marquering Henk A, Arrarte Terreros Nerea, de Groot Joris R

机构信息

Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands.

Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands.

出版信息

Diagnostics (Basel). 2025 May 16;15(10):1269. doi: 10.3390/diagnostics15101269.

Abstract

: The rate of recurrence after ablation for atrial fibrillation (AF) is considerable. Risk stratification for AF recurrence after ablation remains incompletely developed. Unsupervised clustering is a machine learning technique which might provide valuable insights in AF recurrence by identifying patient clusters using numerous clinical characteristics. We hypothesize that unsupervised clustering identifies patient clusters with different clinical phenotypes, including AF type and cardiovascular morbidities, and ablation outcomes. : Baseline and procedural characteristics of 658 patients undergoing thoracoscopic ablation for advanced AF (persistent, with enlarged left atria, or with previous failed catheter ablation) between 2008 and 2021 were collected. Principal component analysis (PCA) was used as an unsupervised dimensionality reduction technique, followed by K-Means clustering for unsupervised data clustering. The silhouette score was used to determine the optimal number of clusters, resulting in the formation of three clusters. CHADS-VASc score and AF recurrence were not included in the clustering, but were compared between clusters. Moreover, we compared the patients with and without previously established risk factors for AF recurrence for each cluster. : Unsupervised clustering resulted in three distinct clusters. Cluster I had a significantly lower rate of AF recurrence than Cluster II, which contained significantly more persistent AF patients than the other clusters. The CHADS-VASc score in Cluster III was significantly higher than in the other clusters. In all clusters, but particularly in Cluster III, the recurrence risk was higher for persistent AF patients and female patients. In Cluster II, the recurrence risk was not influenced by an increased left atrial volume index, unlike other clusters. : Using unsupervised clustering of clinical and procedural data, we identified three distinct advanced AF patient clusters with differences in AF type, CHADS-VASc score, and AF recurrence. We found that established risk factors like BMI, AF type, and LAVI vary in importance across clusters.

摘要

心房颤动(AF)消融术后的复发率相当高。AF消融术后复发的风险分层仍未完全完善。无监督聚类是一种机器学习技术,它可能通过利用众多临床特征识别患者集群,从而为AF复发提供有价值的见解。我们假设无监督聚类可识别出具有不同临床表型的患者集群,包括AF类型、心血管疾病以及消融结果。

收集了2008年至2021年间658例接受胸腔镜消融治疗晚期AF(持续性、左心房增大或既往导管消融失败)患者的基线和手术特征。主成分分析(PCA)被用作无监督降维技术,随后进行K均值聚类以进行无监督数据聚类。轮廓系数用于确定最佳聚类数,最终形成了三个集群。聚类过程中未纳入CHADS-VASc评分和AF复发情况,但对各集群之间进行了比较。此外,我们还比较了每个集群中有无先前确定的AF复发危险因素的患者。

无监督聚类产生了三个不同的集群。集群I的AF复发率明显低于集群II,集群II中持续性AF患者的数量明显多于其他集群。集群III的CHADS-VASc评分明显高于其他集群。在所有集群中,尤其是在集群III中,持续性AF患者和女性患者的复发风险更高。与其他集群不同,在集群II中,复发风险不受左心房容积指数增加的影响。

通过对临床和手术数据进行无监督聚类,我们识别出了三个不同的晚期AF患者集群,它们在AF类型、CHADS-VASc评分和AF复发方面存在差异。我们发现,体重指数、AF类型和左心房容积指数等既定危险因素在不同集群中的重要性各不相同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58d8/12110638/5e7ac2c4bfea/diagnostics-15-01269-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验