Suppr超能文献

利用外延钒膜在准束缚态连续(BIC)太赫兹超材料中的调制效应

Exploiting the Modulation Effects of Epitaxial Vanadium Film in a Quasi-BIC-Based Terahertz Metamaterial.

作者信息

Lu Chang, Liu Junxiao, Chen Sihong, Guo Junxiong

机构信息

Department of Electronic Communication and Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China.

School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.

出版信息

Materials (Basel). 2025 May 10;18(10):2197. doi: 10.3390/ma18102197.

Abstract

Terahertz (THz) metamaterials based on phase-change materials (PCMs) offer promising approaches to the dynamic modulation of electromagnetic responses. In this study, we design and experimentally demonstrate a tunable THz metamaterial composed of a symmetric split-ring resonator (SRR) pair, with the left halves covered by a 35 nm thick epitaxial vanadium dioxide (VO) film, enabling the simultaneous exploitation of both permittivity- and conductivity-induced modulation mechanisms. During the metal-insulator transition (MIT) of VO, cooperative changes in permittivity and conductivity lead to the excitation, redshift, and eventual disappearance of a quasi-bound state in the continuum (QBIC) resonance. Finite element simulations, using optical parameters of VO film defined by the Drude-Smith model, predict the evolution of the transmission spectra well. These results indicate that the permittivity change originating from mesoscopic carrier confinement is a non-negligible factor in THz metamaterials hybridized with VO film and also reveal the potential for developing reconfigurable THz metamaterials based on the dielectric modulation effects of VO film.

摘要

基于相变材料(PCM)的太赫兹(THz)超材料为电磁响应的动态调制提供了有前景的方法。在本研究中,我们设计并通过实验证明了一种由对称分裂环谐振器(SRR)对组成的可调谐太赫兹超材料,其左半部分覆盖有35纳米厚的外延二氧化钒(VO)薄膜,能够同时利用介电常数和电导率诱导的调制机制。在VO的金属-绝缘体转变(MIT)过程中,介电常数和电导率的协同变化导致连续谱中的准束缚态(QBIC)共振的激发、红移以及最终消失。使用由德鲁德-史密斯模型定义的VO薄膜光学参数进行的有限元模拟,很好地预测了透射光谱的演变。这些结果表明,源自介观载流子限制的介电常数变化在与VO薄膜杂交的太赫兹超材料中是一个不可忽视的因素,并且还揭示了基于VO薄膜的介电调制效应开发可重构太赫兹超材料的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e691/12112876/72a325a97103/materials-18-02197-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验