Zhang Lun, Zheng Jiamin, Bux Rashid A, Haince Jean-François, Torres-Calzada Claudia, Mandal Rupasri, Maksymiuk Andrew, Huang Guoyu, Tappia Paramjit S, Joubert Philippe, Rolfo Christian D, Wishart David S
The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 2E8, Canada.
BioMark Diagnostics Inc., Richmond, BC V6X 2W2, Canada.
Int J Mol Sci. 2025 May 9;26(10):4519. doi: 10.3390/ijms26104519.
Early detection of lung cancer significantly improves survival, yet current screening methods have limitations. This study aimed to identify a robust panel of plasma metabolites for early-stage non-small cell lung cancer (NSCLC) diagnosis using a large, clinically diverse patient cohort. A total of 680 archived plasma samples from biopsy-confirmed NSCLC patients and controls (including healthy individuals and patients with non-cancerous lung diseases) were analyzed using targeted, quantitative mass spectrometry-based metabolomics and used as the discovery cohort. An independent set of 216 plasma samples served as the validation cohort. Logistic regression (LR) models developed from the discovery set using ten metabolites achieved area under the receiver-operating characteristic curve (AUROC) values of 93.63%, 93.74%, and 93.91% for distinguishing all-stage, stage I-II, and stage I NSCLC patients from controls, respectively. Incorporating smoking history further improved model performance. The validation cohort confirmed the model's robustness, demonstrating high sensitivity and specificity for early-stage detection. These results support the potential of metabolomic biomarkers as a minimally invasive, accurate tool for early NSCLC diagnosis. This approach may complement current screening methods, enabling earlier intervention and improved patient outcomes. Further studies are warranted to validate these findings in more diverse populations and real-world clinical settings.
肺癌的早期检测可显著提高生存率,但目前的筛查方法存在局限性。本研究旨在利用一个大型的、临床情况多样的患者队列,确定一组用于早期非小细胞肺癌(NSCLC)诊断的强大血浆代谢物。使用基于靶向定量质谱的代谢组学方法,对来自活检确诊的NSCLC患者和对照组(包括健康个体和非癌性肺部疾病患者)的680份存档血浆样本进行分析,并将其用作发现队列。另外216份血浆样本作为独立的验证队列。使用十种代谢物从发现队列中建立的逻辑回归(LR)模型,在区分所有阶段、I-II期和I期NSCLC患者与对照组时,受试者操作特征曲线下面积(AUROC)值分别达到93.63%、93.74%和93.91%。纳入吸烟史进一步提高了模型性能。验证队列证实了该模型的稳健性,显示出对早期检测具有高敏感性和特异性。这些结果支持代谢组学生物标志物作为早期NSCLC诊断的微创、准确工具的潜力。这种方法可能补充当前的筛查方法,实现更早的干预并改善患者预后。有必要进行进一步研究,以在更多样化的人群和真实世界临床环境中验证这些发现。