Wang Zhinan, Li Xiaowei, Zhao Liang, Liu Saiwa, Du Jingjing, Jia Xi, Ge Lirui, Xu Jian, Cui Kexin, Ga Yu, Wang Jinxiu, Xia Xi
National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
Hainan Provincial Animal Disease Prevention and Control Center, Haikou 571100, China.
Molecules. 2025 May 11;30(10):2122. doi: 10.3390/molecules30102122.
The emergence of -mediated colistin resistance has become a critical global health concern, highlighting the urgent need for innovative approaches to restore colistin's therapeutic potential. In this study, we evaluated the antibacterial activity of four matrine-type alkaloids-namely, matrine, oxymatrine, sophocarpine, and sophoramine-against -positive . While these alkaloids showed limited efficacy when used alone, the combination of matrine with colistin exhibited remarkable synergistic effects, as demonstrated by checkerboard assays and time-kill curve analyses. The matrine-colistin combination caused minimal erythrocyte damage while effectively attenuating resistance development in vitro. This synergy was further corroborated in a murine infection model, where the combination significantly reduced bacterial loads in target tissues. Mechanistic studies revealed that the matrine-colistin combination enhances antimicrobial activity by disrupting bacterial membrane integrity, increasing intracellular colistin accumulation, and triggering reactive oxygen species-mediated oxidative damage. Collectively, these findings highlight the potential of matrine as a promising adjuvant to overcome colistin resistance, providing a novel therapeutic approach to address the challenge of infections cause by multidrug-resistant Gram-negative bacteria.
由[具体机制]介导的黏菌素耐药性的出现已成为全球关键的健康问题,凸显了迫切需要创新方法来恢复黏菌素的治疗潜力。在本研究中,我们评估了四种苦参碱型生物碱——即苦参碱、氧化苦参碱、槐果碱和槐胺碱——对[细菌类型]阳性菌的抗菌活性。虽然这些生物碱单独使用时疗效有限,但棋盘法和时间杀菌曲线分析表明,苦参碱与黏菌素联合使用具有显著的协同效应。苦参碱 - 黏菌素组合对红细胞的损伤最小,同时在体外有效减缓耐药性的产生。在小鼠感染模型中进一步证实了这种协同作用,该组合显著降低了靶组织中的细菌载量。机制研究表明,苦参碱 - 黏菌素组合通过破坏细菌膜完整性、增加细胞内黏菌素积累以及引发活性氧介导的氧化损伤来增强抗菌活性。总体而言,这些发现突出了苦参碱作为克服黏菌素耐药性的有前景佐剂的潜力,为应对多重耐药革兰氏阴性菌引起的感染挑战提供了一种新的治疗方法。