Chu Jiaxin, Song Jianqiang, Fan Zhuolin, Zhang Ruijun, Wang Qiwei, Yi Kexin, Gong Quan, Liu Benju
Department of Medcine, Yangtze University, Jingzhou 434023, China.
Pharmaceuticals (Basel). 2025 Apr 22;18(5):605. doi: 10.3390/ph18050605.
Diabetic encephalopathy (DE), a severe neurological complication of diabetes mellitus (DM), is characterized by cognitive dysfunction. 3-Methyladenine (3-MA), a methylated adenine derivative, acts as a biomarker for DNA methylation and exhibits hypoglycemic and neuroprotective properties. However, the pharmacological mechanisms underlying 3-MA's therapeutic effects on diabetic microvascular complications remain incompletely understood, owing to the intricate and multifactorial pathogenesis of DE. : This study employed network pharmacology and molecular docking techniques to predict potential targets and signaling pathways of 3-MA against DE, with subsequent validation through animal experiments to elucidate the molecular mechanisms of 3-MA in DE treatment. : Network pharmacological analysis identified two key targets of 3-MA in DE modulation: AKT and GSK3β. Molecular docking confirmed a strong binding affinity between 3-MA and AKT/GSK3β. In animal experiments, 3-MA significantly reduced blood glucose levels in diabetic mice, ameliorated learning and memory deficits, and preserved hippocampal neuronal integrity. Furthermore, we found that 3-MA inhibited apoptosis by regulating the expression of Bax and BCL-2. Notably, 3-MA also downregulated the expression of amyloid precursor protein (APP) and Tau while enhancing the expression of phosphorylated AKT and GSK-3β. : Our findings may contribute to elucidating the therapeutic mechanisms of 3-MA in diabetic microangiopathy and provide potential therapeutic targets through activation of the AKT/GSK-3β pathway.
糖尿病性脑病(DE)是糖尿病(DM)的一种严重神经并发症,其特征为认知功能障碍。3-甲基腺嘌呤(3-MA)是一种甲基化腺嘌呤衍生物,作为DNA甲基化的生物标志物,具有降血糖和神经保护特性。然而,由于DE复杂的多因素发病机制,3-MA对糖尿病微血管并发症治疗作用的药理机制仍未完全阐明。本研究采用网络药理学和分子对接技术预测3-MA抗DE的潜在靶点和信号通路,随后通过动物实验进行验证,以阐明3-MA在DE治疗中的分子机制。网络药理学分析确定了3-MA在DE调节中的两个关键靶点:AKT和GSK3β。分子对接证实3-MA与AKT/GSK3β之间具有很强的结合亲和力。在动物实验中,3-MA显著降低糖尿病小鼠的血糖水平,改善学习和记忆缺陷,并维持海马神经元完整性。此外,我们发现3-MA通过调节Bax和BCL-2的表达来抑制细胞凋亡。值得注意的是,3-MA还下调淀粉样前体蛋白(APP)和Tau的表达,同时增强磷酸化AKT和GSK-3β的表达。我们的研究结果可能有助于阐明3-MA在糖尿病微血管病变中的治疗机制,并通过激活AKT/GSK-3β通路提供潜在的治疗靶点。