Suppr超能文献

陆地棉果枝角度的表型遗传分析

Phenotypic Genetic Analysis of Fruit Branch Angle in Upland Cotton.

作者信息

Tan Yanping, Long Yilei, Yang Yinan, Wang Yin, Jin Shen, Ai Xiantao

机构信息

College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.

College of Smart Agriculture (Research Institute), Xinjiang University, Urumqi 830017, China.

出版信息

Plants (Basel). 2025 May 18;14(10):1512. doi: 10.3390/plants14101512.

Abstract

This study aims to reveal the genetic variation of fruit branch angle (FBA) in upland cotton, thereby providing a scientific basis and practical guidance for cotton architecture breeding. We explored the genetic variation pattern of FBA in 300 upland cottons from different regions and different periods, respectively. Cluster analysis and principal component analysis were used to comprehensively evaluate the plant architecture traits and yield traits in 300 upland cottons. The results demonstrated that the range of variation of FBA in cotton was 43.59-69.32°, the coefficient of variation ranged from 6.06% to 7.42%, and the broad-sense heritability was 75.50%. The order of FBA in different regions was as follows: Foreign Germplasm (FG; 56.77°) > Yellow River Region (YRR; 56.24°) > Yangtze River Region (YZRR; 56.16°) > Liaoning Special Maturing Region (LSMR; 55.35°) > Northwest Inland Region (NIR; 55.25), which is rich in genetic diversity. FBA in cotton in different periods had obvious differences. FBA was the largest before 1960, and as the period progressed, FBA showed an overall fluctuating decrease, whose coefficient of variation and genetic diversity index tended to increase. In this study, it was found that when the range of FBA was 50.46-55.31°, cotton had the best overall performance, with compact architecture, fewer empty fruit branches, more bells, and higher yield, which can be further developed and utilized as an excellent cotton germplasm resource.

摘要

本研究旨在揭示陆地棉果枝角度(FBA)的遗传变异,从而为棉花株型育种提供科学依据和实践指导。我们分别探究了来自不同地区和不同时期的300份陆地棉FBA的遗传变异模式。采用聚类分析和主成分分析对300份陆地棉的株型性状和产量性状进行综合评价。结果表明,棉花FBA的变异范围为43.59 - 69.32°,变异系数在6.06%至7.42%之间,广义遗传力为75.50%。不同地区FBA的顺序如下:国外种质(FG;56.77°)>黄河流域(YRR;56.24°)>长江流域(YZRR;56.16°)>辽宁特早熟棉区(LSMR;55.35°)>西北内陆棉区(NIR;55.25°),遗传多样性丰富。不同时期棉花的FBA存在明显差异。1960年前FBA最大,随着时间推移,FBA总体呈波动下降趋势,其变异系数和遗传多样性指数呈上升趋势。本研究发现,当FBA范围为50.46 - 55.31°时,棉花整体表现最佳,株型紧凑,空果枝少,棉铃多,产量高,可作为优良棉花种质资源进一步开发利用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d85a/12115341/96e39a9a56da/plants-14-01512-g001.jpg

相似文献

1
Phenotypic Genetic Analysis of Fruit Branch Angle in Upland Cotton.
Plants (Basel). 2025 May 18;14(10):1512. doi: 10.3390/plants14101512.
2
Genome-wide association study and transcriptome analysis reveal key genes controlling fruit branch angle in cotton.
Front Plant Sci. 2022 Sep 21;13:988647. doi: 10.3389/fpls.2022.988647. eCollection 2022.
3
Identifying favorable alleles for improving key agronomic traits in upland cotton.
BMC Plant Biol. 2019 Apr 11;19(1):138. doi: 10.1186/s12870-019-1725-y.
6
Genetic Mapping and Analysis of a Compact Plant Architecture and Precocious Mutant in Upland Cotton.
Plants (Basel). 2022 May 31;11(11):1483. doi: 10.3390/plants11111483.
8
Dissecting Genetic Network of Fruit Branch Traits in Upland Cotton by Association Mapping Using SSR Markers.
PLoS One. 2017 Jan 25;12(1):e0162815. doi: 10.1371/journal.pone.0162815. eCollection 2017.
9
Genetic diversity of source germplasm of Upland cotton in China as determined by SSR marker analysis.
Yi Chuan Xue Bao. 2006 Aug;33(8):733-45. doi: 10.1016/S0379-4172(06)60106-6.
10
Detection of favorable alleles for yield and yield components by association mapping in upland cotton.
Genes Genomics. 2018 Jul;40(7):725-734. doi: 10.1007/s13258-018-0678-0. Epub 2018 Mar 23.

本文引用的文献

2
Genome-wide association study and transcriptome analysis reveal key genes controlling fruit branch angle in cotton.
Front Plant Sci. 2022 Sep 21;13:988647. doi: 10.3389/fpls.2022.988647. eCollection 2022.
3
Molecular basis underlying rice tiller angle: Current progress and future perspectives.
Mol Plant. 2022 Jan 3;15(1):125-137. doi: 10.1016/j.molp.2021.12.002. Epub 2021 Dec 9.
4
TAC4 controls tiller angle by regulating the endogenous auxin content and distribution in rice.
Plant Biotechnol J. 2021 Jan;19(1):64-73. doi: 10.1111/pbi.13440. Epub 2020 Jul 20.
5
Genetic Regulation of Shoot Architecture.
Annu Rev Plant Biol. 2018 Apr 29;69:437-468. doi: 10.1146/annurev-arplant-042817-040422. Epub 2018 Mar 19.
7
A Novel Tiller Angle Gene, TAC3, together with TAC1 and D2 Largely Determine the Natural Variation of Tiller Angle in Rice Cultivars.
PLoS Genet. 2016 Nov 4;12(11):e1006412. doi: 10.1371/journal.pgen.1006412. eCollection 2016 Nov.
9
Molecular basis of plant architecture.
Annu Rev Plant Biol. 2008;59:253-79. doi: 10.1146/annurev.arplant.59.032607.092902.
10
TAC1, a major quantitative trait locus controlling tiller angle in rice.
Plant J. 2007 Dec;52(5):891-8. doi: 10.1111/j.1365-313X.2007.03284.x. Epub 2007 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验