影响HIV-1蛋白酶抑制剂结合的因素:来自机器学习模型的见解
Factors Influencing the Binding of HIV-1 Protease Inhibitors: Insights from Machine Learning Models.
作者信息
Shalit Yaffa, Tuvi-Arad Inbal
机构信息
Department of Natural Sciences, The Open University of Israel, Raanana, 4353701, Israel.
出版信息
ChemMedChem. 2025 Aug 2;20(15):e202500277. doi: 10.1002/cmdc.202500277. Epub 2025 Jun 21.
HIV-1 protease (PR) inhibitors are crucial for antiviral therapies targeting acquired immunodeficiency syndrome. Hundreds of PR complexes with various ligands have been resolved and deposited in the Protein Data Bank. However, binding affinity measurements for these ligands are not always available. This gap hinders a comprehensive understanding of inhibitor efficacy. To address this challenge, machine learning models are constructed and validated based on the crystallographic coordinates of 291 PR-inhibitor complexes, leveraging over 2500 molecular descriptors. The models achieved accuracy scores exceeding 0.85, and applied to predict the binding affinity of 274 additional complexes for which inhibition constants are not experimentally measured. The analysis is focused on three models, each with 8-9 features, and based on KBest with random forest, recursive feature elimination with random forest, and sequential feature selection with support vector machine. The findings revealed key predictive features, including properties of PR inhibitors like charge distribution, hydrogen-bonding capability, and 3D topology, as well as intrinsic properties of PR, such as active site symmetry and flap mutations. The study highlights the contribution of a comprehensive analysis of accumulated experimental data to enhance the structural understanding of this important molecular system.
HIV-1蛋白酶(PR)抑制剂对于针对获得性免疫缺陷综合征的抗病毒治疗至关重要。数百种含有各种配体的PR复合物已被解析并存入蛋白质数据库。然而,这些配体的结合亲和力测量数据并非总是可得。这一差距阻碍了对抑制剂疗效的全面理解。为应对这一挑战,基于291种PR-抑制剂复合物的晶体学坐标构建并验证了机器学习模型,利用了2500多个分子描述符。这些模型的准确率得分超过0.85,并用于预测另外274种未通过实验测量抑制常数的复合物的结合亲和力。分析聚焦于三个模型,每个模型有8 - 9个特征,分别基于随机森林的KBest、随机森林的递归特征消除以及支持向量机的序列特征选择。研究结果揭示了关键的预测特征,包括PR抑制剂的性质,如电荷分布、氢键结合能力和三维拓扑结构,以及PR的固有性质,如活性位点对称性和瓣片突变。该研究强调了对积累的实验数据进行全面分析对于增强对这个重要分子系统的结构理解的贡献。
相似文献
2025-1
Comput Methods Programs Biomed. 2025-6-21
本文引用的文献
ChemMedChem. 2025-3-15
J Chem Inf Model. 2024-7-22
J Mol Graph Model. 2021-11
Nat Rev Drug Discov. 2019-6
ACS Omega. 2018-11-30