Koç İrem, Onbasli Kubra, Kurt Cem, Atac Nazli, Cooper Francis K, Çam Kübra, Cakir Ece, Yagan Rawana, Can Fusun, Sennaroglu Alphan, Onbasli Mehmet C, Yagci Acar Havva
Koç University, Graduate School of Sciences and Engineering, Materials Science and Engineering, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Türkiye.
Istanbul Technical University, Faculty of Chemical and Metallurgical Engineering, Metallurgical and Materials Engineering Department, 34469 Maslak, Istanbul, Türkiye.
Nanoscale. 2025 May 28. doi: 10.1039/d4nr03798g.
New therapies are essential for eliminating antibiotic-resistant bacteria and their biofilms, which are a major global health threat, causing millions of deaths annually. Here, we demonstrate a combination of photodynamic therapy (PDT) and photothermal therapy (PTT) for the inhibition of biofilms of and using aminolevulinic acid (ALA)-loaded polyacrylic acid-coated superparamagnetic iron oxide nanoparticles (PAA-SPIONs) at 200, 600 and 1000 μg mL Fe concentrations under 640 nm (0.75 W cm), 808 nm (2.6 W cm) and 640 + 808 nm (0.75 + 2.6 W cm, 20 min) irradiation. PTT experiments indicate ALA/PAA-SPION concentration-dependent heating up to 10.2 °C for PAA-SPIONs and 9.3 °C for ALA/PAA-SPIONs under combined 640 + 808 nm laser excitation. Bacterial growth inhibition by ALA/PAA-SPIONs was investigated with and without laser irradiation for 10 min using 150 and 600 μg Fe per mL or 0.5 mM and 2 mM ALA on both bacterial types. These experiments indicate a 3 to 6-log reduction in compared to control samples (without nanoparticles or a laser) with increasing Fe and ALA concentrations. Growth was completely inhibited by ALA/PAA-SPIONs under 640 + 808 nm irradiation. ALA/PAA-SPIONs caused growth inhibition of between 2-log and 4-log with increasing wavelengths, Fe and ALA doses. PAA-SPIONs and a laser together inhibited the biofilms of with 3 to 11-log reductions with increasing laser wavelengths. The reduction of the biofilm with ALA/PAA-SPIONs and a laser reaches 8-log for 640 nm and 13-log for 808 nm excitation. We accurately model the wavelength, time, and nanoparticle concentration dependence of PTT for the first time. These results pave the way for effective PDT/PTT elimination of biofilms of and
新疗法对于消除抗生素耐药细菌及其生物膜至关重要,这些细菌及其生物膜是全球主要的健康威胁,每年导致数百万人死亡。在此,我们展示了一种光动力疗法(PDT)和光热疗法(PTT)的联合应用,用于抑制金黄色葡萄球菌和大肠杆菌的生物膜,使用负载氨基乙酰丙酸(ALA)的聚丙烯酸包覆超顺磁性氧化铁纳米颗粒(PAA-SPIONs),铁浓度分别为200、600和1000μg/mL,在640nm(0.75W/cm²)、808nm(2.6W/cm²)以及640 + 808nm(0.75 + 2.6W/cm²,20分钟)照射下进行实验。PTT实验表明,在640 + 808nm激光联合激发下,PAA-SPIONs的升温可达10.2℃,ALA/PAA-SPIONs的升温可达9.3℃,且升温与ALA/PAA-SPION浓度有关。使用每毫升150和600μg铁或0.5mM和2mM ALA,对两种细菌在有和无激光照射10分钟的情况下,研究了ALA/PAA-SPIONs对细菌生长的抑制作用。这些实验表明,与对照样品(无纳米颗粒或激光)相比,随着铁和ALA浓度的增加,金黄色葡萄球菌的数量减少了3至6个对数级。在640 + 808nm照射下,ALA/PAA-SPIONs完全抑制了细菌生长。随着波长、铁和ALA剂量的增加,ALA/PAA-SPIONs对大肠杆菌的生长抑制在2至4个对数级之间。PAA-SPIONs与激光一起,随着激光波长增加,对金黄色葡萄球菌生物膜的抑制作用降低了3至11个对数级。对于640nm激发,ALA/PAA-SPIONs与激光一起对生物膜的减少达到8个对数级,对于808nm激发则达到13个对数级。我们首次准确地模拟了PTT的波长、时间和纳米颗粒浓度依赖性。这些结果为有效利用PDT/PTT消除金黄色葡萄球菌和大肠杆菌的生物膜铺平了道路。