Yuan Zhongke, Li Jing, Fang Zhengsong, Yang Meijia, Zhong Linfeng, Liu Cong, Ma Jingyuan, Zeng Zhiping, Yu Dingshan, Chen Xudong, Dai Liming
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, China.
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China.
Angew Chem Int Ed Engl. 2025 Jul 28;64(31):e202503936. doi: 10.1002/anie.202503936. Epub 2025 Jun 3.
The electrocatalytic oxygen evolution and reduction reaction (OER/ORR) catalysts are paramount to many renewable energy technologies. Atomically-dispersed transition-metal catalysts are compelling alternatives to current dominant noble-metal catalysts, yet they often show inadequate activity for OER and insufficient durability in practical battery operations. Here, we show a rational methodology that enables single-metal-site catalyst to break universal adsorption-energy scaling limitations for both OER/ORR and push bifunctional catalytic performance of transition-metal-dominated catalysts to unprecedented level. Other than metal-nitrogen coordination, the newly-designed catalyst (namely metal-C-B) stabilizes atomic metals on B-doped carbon via metal-carbon coordination and afford favorable electronic engineering. The optimized Co-C-B catalyst in base exhibits a record-low OER overpotential of 172 mV at 10 mA cm and a superior ORR half-wave potential of 0.87 V with robust stability over 500 h of continuous OER or ORR, which endows a rechargeable Zn-air battery with over 6755 charge/discharge cycles. The delivered mass activities of 33941 A g for OER and 15873 A g for ORR are respectively ∼112/80-fold higher than those of commercial noble-metal counterparts. Atomically-dispersed CoCBᵪ moieties were theoretically identified as unique bifunctional active centers, breaking usual scaling relations of intermediates adsorption and boosting inherent OER/ORR activities simultaneously beyond theoretical limitations for single metal site.
电催化析氧和还原反应(OER/ORR)催化剂对许多可再生能源技术至关重要。原子分散的过渡金属催化剂是当前占主导地位的贵金属催化剂的有力替代品,但它们在OER方面往往表现出活性不足,在实际电池运行中耐久性也不够。在此,我们展示了一种合理的方法,使单金属位点催化剂能够打破OER/ORR普遍的吸附能标度限制,并将过渡金属主导的催化剂的双功能催化性能提升到前所未有的水平。除了金属-氮配位外,新设计的催化剂(即金属-C-B)通过金属-碳配位将原子金属稳定在硼掺杂的碳上,并提供良好的电子工程。优化后的碱性Co-C-B催化剂在10 mA cm²时表现出创纪录的172 mV的低OER过电位和0.87 V的优异ORR半波电位,在连续OER或ORR超过500小时具有稳健的稳定性,这赋予可充电锌空气电池超过6755次充放电循环。OER的33941 A g⁻¹和ORR的15873 A g⁻¹的质量活性分别比商业贵金属对应物高约112/80倍。从理论上确定原子分散的CoCBₓ部分是独特的双功能活性中心,打破了中间体吸附的通常标度关系,并同时将固有的OER/ORR活性提高到超出单金属位点理论限制的水平。