Suppr超能文献

通过增强生物信息学分析和机器学习鉴定用于非酒精性脂肪性肝炎致病机制和诊断的枢纽基因

Identification of hub gene for the pathogenic mechanism and diagnosis of MASLD by enhanced bioinformatics analysis and machine learning.

作者信息

Lu Hong, Mao Ziyong, Zheng Mengyao, Zhang Min, Huang Heqing, Chen Yiling, Lv Long, Chen Zutao

机构信息

Infectious Disease Department, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.

BamRock Research Department, Suzhou BamRock Biotechnology Ltd., Suzhou, Jiangsu Province, China.

出版信息

PLoS One. 2025 May 28;20(5):e0324972. doi: 10.1371/journal.pone.0324972. eCollection 2025.

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a heterogeneous disease caused by multiple etiologies. It is characterized by excessive fat accumulation in the liver. Without intervention, MASLD can progress from steatosis to metabolic dysfunction-associated steatohepatitis (MASH), fibrosis and even to cirrhosis and hepatocellular carcinoma. However, the pathogenesis of MASH and the mechanism underlying the development of fibrosis remain poorly understood, posing challenges for accurate diagnosis of MASH and fibrosis. In this study, we analyzed tissue RNA-seq data and clinical information of healthy individuals and MASLD patients from multiple datasets, the key genes and pathways involved in the occurrence and progression of MASLD, MASH, and fibrosis were screened respectively. Our findings reveal that the development of MASLD, MASH and fibrosis is associated with lipid metabolism processes. Based on the RNA expression profiles of identified hub genes, we established three alternative diagnostic models for MASLD, MASH, and fibrosis. These models demonstrated excellent performance in the diagnosis of MASLD, MASH, and fibrosis, with AUC values exceeding 0.9, implicating its potential clinical values in disease diagnosis.

摘要

代谢功能障碍相关脂肪性肝病(MASLD)是一种由多种病因引起的异质性疾病。其特征是肝脏中脂肪过度积累。若不进行干预,MASLD可从脂肪变性发展为代谢功能障碍相关脂肪性肝炎(MASH)、纤维化,甚至发展为肝硬化和肝细胞癌。然而,MASH的发病机制以及纤维化发展的潜在机制仍知之甚少,这给MASH和纤维化的准确诊断带来了挑战。在本研究中,我们分析了来自多个数据集的健康个体和MASLD患者的组织RNA测序数据及临床信息,分别筛选出了与MASLD、MASH和纤维化的发生及进展相关的关键基因和通路。我们的研究结果表明,MASLD、MASH和纤维化的发展与脂质代谢过程有关。基于已鉴定的枢纽基因的RNA表达谱,我们建立了三种用于MASLD、MASH和纤维化的替代诊断模型。这些模型在MASLD、MASH和纤维化的诊断中表现出优异的性能,AUC值超过0.9,表明其在疾病诊断中具有潜在的临床价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/442e/12118866/8d381763ffd2/pone.0324972.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验