Weith Matthias, Weiss Konstantin, Stobbe Dylan, Riemer Jan
Redox Metabolism Group, Institute for Biochemistry, 14309 University of Cologne , D-50674, Cologne, Germany.
Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931, Cologne, Germany.
Biol Chem. 2025 May 27. doi: 10.1515/hsz-2025-0108.
The mitochondrial intermembrane space (IMS) houses proteins essential for redox regulation, protein import, signaling, and energy metabolism. Protein import into the IMS is mediated by dedicated pathways, including the disulfide relay pathway for oxidative folding. In addition, various IMS-traversing import pathways potentially expose unfolded proteins, representing threats to proteostasis. This trafficking of precursors coincides with unique biophysical challenges in the IMS, including a confined volume, elevated temperature, variable pH and high levels of reactive oxygen species. Ultrastructural properties and import supercomplex formation ameliorate these challenges. Nonetheless, IMS proteostasis requires constant maintenance by chaperones, folding catalysts, and proteases to counteract misfolding and aggregation. The IMS plays a key role in stress signaling, where proteostasis disruptions trigger responses including the integrated stress response (ISR) activated by mitochondrial stress (ISRmt) and responses to cytosolic accumulation of mitochondrial protein precursors. This review explores the biology and mechanisms governing IMS proteostasis, presents models, which have been employed to decipher IMS-specific stress responses, and discusses open questions.
线粒体膜间隙(IMS)中存在着对氧化还原调节、蛋白质导入、信号传导和能量代谢至关重要的蛋白质。蛋白质导入IMS由特定途径介导,包括用于氧化折叠的二硫键中继途径。此外,各种穿越IMS的导入途径可能会使未折叠的蛋白质暴露,这对蛋白质稳态构成威胁。前体蛋白的这种运输与IMS中独特的生物物理挑战同时存在,包括有限的空间、升高的温度、可变的pH值和高水平的活性氧。超微结构特性和导入超复合物的形成缓解了这些挑战。尽管如此,IMS蛋白质稳态仍需要伴侣蛋白、折叠催化剂和蛋白酶持续维持,以对抗错误折叠和聚集。IMS在应激信号传导中起关键作用,蛋白质稳态的破坏会触发包括由线粒体应激激活的综合应激反应(ISR)(ISRmt)以及对线粒体蛋白质前体胞质积累的反应等。本综述探讨了控制IMS蛋白质稳态的生物学和机制,介绍了用于破译IMS特异性应激反应的模型,并讨论了未解决的问题。