Suppr超能文献

预测加纳前列腺癌转移:多参数模型与前列腺特异性抗原(PSA)模型的比较

Predicting prostate cancer metastasis in Ghana: Comparison of multiparametric and PSA models.

作者信息

Obeng Frank, Okai Joyce Naa Aklerh, Sutherland Edward

机构信息

University of Health and Allied Sciences, Ho, Volta Region.

Ensign Global College, Kpong, Eastern Region, Ghana.

出版信息

PLoS One. 2025 May 28;20(5):e0323180. doi: 10.1371/journal.pone.0323180. eCollection 2025.

Abstract

BACKGROUND

Prostate cancer is the most prevalent male malignancy in Ghana, with a high-risk of metastatic progression. Early detection and adequate disease severity stratification are crucial for timely intervention, comprehensive management, and improved outcomes. This study evaluates and compares the predictive abilities of a multiparametric model and a PSA-alone model in forecasting metastasis in prostate cancer patients.

OBJECTIVE

To compare the performance of a multiparametric model and a PSA-alone model in predicting metastasis in prostate cancer patients in Ghana.

METHODOLOGY

Logistic regression analyses were conducted on a dataset of 426 prostate cancer cases. The multiparametric model included variables such as age, BMI, marital status, ethnicity, socioeconomic status, clinical stage by DRE findings, PSA levels, and Gleason score. The PSA-alone model focused solely on PSA levels. Model performance metrics included Pseudo R-Squared, AUC, sensitivity, specificity, accuracy, PPV, NPV, FPR, FNR, and F1-Score. The Hosmer-Lemeshow test assessed the goodness-of-fit for the multiparametric model. All analyses were conducted at a 5% level of significance.

RESULTS

The multiparametric model achieved a Pseudo R-Squared of 71.17%, AUC of 97.18%, sensitivity of 93.20%, specificity of 96.21%, accuracy of 92.25%, PPV of 85.62%, NPV of 96.24%, FPR of 8.24%, FNR of 6.80%, and F1-Score of 81.02%. The Hosmer-Lemeshow test yielded a non-significant p-value of 0.2405. The PSA-alone model had sensitivity of 32.24%, specificity of 91.76%, accuracy of 88.03%, PPV of 77.47%, NPV of 92.02%, FPR of 3.79%, FNR of 67.76%, F1-Score of 45.76%, and AUC of 73.79%. The multiparametric model's Prevalence Yield was 32.15% and Sensitivity Yield was 32.15%, compared to the PSA-alone model's 6.95% and 13.32%, respectively.

CONCLUSION

Both models effectively predict metastasis in prostate cancer patients. The multiparametric model shows superior overall performance with higher Pseudo R-Squared, AUC, and a better balance in sensitivity, specificity, and accuracy. These results suggest the multiparametric model as a more robust tool for metastasis risk assessment in resource-poor settings. However, clinical context and patient characteristics should guide model choice for optimal outcomes.

摘要

背景

前列腺癌是加纳最常见的男性恶性肿瘤,具有较高的转移进展风险。早期检测和准确的疾病严重程度分层对于及时干预、综合管理以及改善预后至关重要。本研究评估并比较了多参数模型和仅使用前列腺特异性抗原(PSA)模型预测前列腺癌患者转移的能力。

目的

比较多参数模型和仅使用PSA模型在预测加纳前列腺癌患者转移方面的性能。

方法

对426例前列腺癌病例数据集进行逻辑回归分析。多参数模型包括年龄、体重指数、婚姻状况、种族、社会经济状况、通过直肠指检结果确定的临床分期、PSA水平和 Gleason评分等变量。仅使用PSA模型仅关注PSA水平。模型性能指标包括伪R平方、曲线下面积(AUC)、敏感性、特异性、准确性、阳性预测值(PPV)、阴性预测值(NPV)、假阳性率(FPR)、假阴性率(FNR)和F1分数。Hosmer-Lemeshow检验评估多参数模型的拟合优度。所有分析均在5%的显著性水平上进行。

结果

多参数模型的伪R平方为71.17%,AUC为97.18%,敏感性为93.20%,特异性为96.21%,准确性为92.25%,PPV为85.62%,NPV为96.24%,FPR为8.24%,FNR为6.80%,F1分数为81.02%。Hosmer-Lemeshow检验得出的p值为0.2405,无统计学意义。仅使用PSA模型的敏感性为32.24%,特异性为91.76%,准确性为88.03%,PPV为77.47%,NPV为92.02%,FPR为3.79%,FNR为67.76%,F1分数为45.76%,AUC为73.79%。多参数模型的患病率检出率为32.15%,敏感性检出率为32.15%,而仅使用PSA模型的患病率检出率和敏感性检出率分别为6.95%和13.32%。

结论

两种模型均能有效预测前列腺癌患者的转移情况。多参数模型显示出卓越的整体性能,具有更高的伪R平方、AUC,并且在敏感性、特异性和准确性方面达到了更好的平衡。这些结果表明,在资源匮乏的环境中,多参数模型是一种更强大的转移风险评估工具。然而,临床背景和患者特征应指导模型选择以实现最佳结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe2/12119020/5bd74aecbc2c/pone.0323180.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验