Ridley Phillip, Duong George, Ko Sarah L, Sam Oh Jin An, Deysher Grayson, Griffith Kent J, Meng Ying Shirley
Department of Nano Engineering, University of California San Diego, La Jolla, California 92093, United States.
Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States.
J Am Chem Soc. 2025 Jun 11;147(23):19508-19519. doi: 10.1021/jacs.4c14670. Epub 2025 May 28.
Solid-state electrolytes enable next-generation batteries that can theoretically deliver higher energy densities while improving device safety. However, when fabricating cathodes for all-solid-state batteries, solid-state electrolytes must be combined with the active materials in high weight fractions in order to achieve sufficient ionic percolation within the cathode composite. This requirement drastically hinders the practicality of solid-state batteries as the solid-state electrolyte is conventionally designed to be electrochemically inactive and is effectively electrochemical "dead weight", lowering both the gravimetric and volumetric energy density of the cell. In this work, a well-known solid-state electrolyte, NaZrCl, is modified by aliovalent substitution of inactive Zr cations with redox-active ( = Nb or Ta) cations to create a series of NaZrCl solid solutions that possess both high ionic conductivities and active sites for Na storage. The Na intercalation mechanisms of these solid-solution materials, in addition to those of the NaCl end-member materials, are elucidated in this work. It was discovered that both the niobium- and tantalum-containing chlorides exhibit rather high electrochemical potentials (2.2-2.8 V vs NaSn), making them ideal catholytes to pair with commonly used oxide cathode materials like NaCrO. This synergistic pairing leads to a cathode composite with an 83-102% increase in energy density and 39-81% improvement in areal discharge capacity compared to a redox-innocent solid electrolyte. This approach highlights the benefits of designing and employing redox-active solid-state electrolytes that can reversibly intercalate charge-carrying cations, opening up a broad new avenue for solid-state electrolyte discovery and solid-state battery design.
固态电解质使下一代电池成为可能,理论上这种电池能够提供更高的能量密度,同时提高设备安全性。然而,在制造全固态电池的阴极时,固态电解质必须与活性材料以高重量分数结合,以便在阴极复合材料中实现足够的离子渗流。这一要求极大地阻碍了固态电池的实用性,因为传统上固态电解质被设计为电化学惰性的,实际上是电化学“死重量”,降低了电池的重量能量密度和体积能量密度。在这项工作中,一种著名的固态电解质NaZrCl通过用具有氧化还原活性的(= Nb或Ta)阳离子对惰性Zr阳离子进行异价取代来改性,以创建一系列既具有高离子电导率又具有钠存储活性位点的NaZrCl固溶体。这项工作阐明了这些固溶体材料以及NaCl端成员材料的钠嵌入机制。研究发现,含铌和含钽的氯化物都表现出相当高的电化学电位(相对于NaSn为2.2 - 2.8 V),这使得它们成为与常用的氧化物阴极材料(如NaCrO)配对的理想阴极电解质。与无氧化还原活性的固态电解质相比,这种协同配对导致阴极复合材料的能量密度提高了83 - 102%,面积放电容量提高了39 - 81%。这种方法突出了设计和使用能够可逆嵌入载流阳离子的氧化还原活性固态电解质的好处,为固态电解质的发现和固态电池的设计开辟了一条广阔的新途径。