Dong Anrui, Lin Gaoxin, Li Zhiheng, Wu Wen, Cao Xing, Li Wenlong, Wang Linqin, Zhao Yilong, Chen Dexin, Sun Licheng
Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China.
Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China.
Nat Commun. 2025 May 28;16(1):4955. doi: 10.1038/s41467-025-59933-6.
The mechanical stability of the catalytic electrodes used for hydrogen evolution reactions (HER) is crucial for their industrial applications in anion exchange membrane water electrolysis (AEM-WE). This study develops a corrosion strategy to construct a self-supported electrocatalyst (Int-Ni/MoO) with high mechanical stability by anchoring the Ni/MoO catalytic layer with a dense interlayer of MoO nanoparticles. The Int-Ni/MoO exhibits a strengthened homostructural interface between the interlayer and catalytic layer, preventing the detachment of the catalyst during ultrasonic treatment. The blade-shaped catalytic layer reduces bubble shock and potential fluctuations at high current densities up to -6000 mA cm. As a result, the Int-Ni/MoO electrode exhibits a low overpotential of 73.2 ± 14.2 mV and long-term stability for 6000 h at -1000 mA cm in a 1 M KOH solution. The Int-Ni/MoO assembled AEM-WE device demonstrates long-term stability at 1000 mA cm for 1000 h with a very low degradation rate of 3.96 µV h.
用于析氢反应(HER)的催化电极的机械稳定性对于其在阴离子交换膜水电解(AEM-WE)中的工业应用至关重要。本研究开发了一种腐蚀策略,通过用致密的MoO纳米颗粒中间层锚定Ni/MoO催化层,构建具有高机械稳定性的自支撑电催化剂(Int-Ni/MoO)。Int-Ni/MoO在中间层和催化层之间表现出强化的同结构界面,可防止催化剂在超声处理过程中脱离。叶片状催化层可减少高达-6000 mA cm的高电流密度下的气泡冲击和电位波动。结果,Int-Ni/MoO电极在1 M KOH溶液中于-1000 mA cm下表现出73.2±14.2 mV的低过电位和6000 h的长期稳定性。Int-Ni/MoO组装的AEM-WE装置在1000 mA cm下表现出1000 h的长期稳定性,降解速率非常低,为3.96 μV h。