Suppr超能文献

在下一代应用的无服务器计算中,使用深度学习方法进行属性约简来减轻恶意钱包拒绝服务攻击。

Mitigating malicious denial of wallet attack using attribute reduction with deep learning approach for serverless computing on next generation applications.

作者信息

Alkhalifa Amal K, Aljebreen Mohammed, Alanazi Rakan, Ahmad Nazir, Alahmari Sultan, Alrusaini Othman, Alqazzaz Ali, Alkhiri Hassan

机构信息

Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Kingdom of Saudi Arabia.

Department of Computer Science, Community College, King Saud University, P.O. Box 28095, Riyadh, 11437, Kingdom of Saudi Arabia.

出版信息

Sci Rep. 2025 May 28;15(1):18720. doi: 10.1038/s41598-025-01178-w.

Abstract

Denial of Wallet (DoW) attacks are one kind of cyberattack whose goal is to develop and expand the financial sources of a group by causing extreme costs in their serverless computing or cloud environments. These threats are chiefly related to serverless structures owing to their features, such as auto-scaling, pay-as-you-go method, cost amplification, and limited control. Serverless computing, Function-as-a-Service (FaaS), is a cloud computing (CC) system that permits developers to construct and run applications without a conventional server substructure. The deep learning (DL) model, a part of the machine learning (ML) technique, has developed as an effectual device in cybersecurity, permitting more effectual recognition of anomalous behaviour and classifying patterns indicative of threats. This study proposes a Mitigating Malicious Denial of Wallet Attack using Attribute Reduction with Deep Learning (MMDoWA-ARDL) approach for serverless computing on next-generation applications. The primary purpose of the MMDoWA-ARDL approach is to propose a novel framework that effectively detects and mitigates malicious attacks in serverless environments using an advanced deep-learning model. Initially, the presented MMDoWA-ARDL model applies data pre-processing using Z-score normalization to transform input data into a valid format. Furthermore, the feature selection process-based cuckoo search optimization (CSO) model efficiently identifies the most impactful attributes related to potential malicious activity. For the DoW attack mitigation process, the bi-directional long short-term memory multi-head self-attention network (BMNet) method is employed. Finally, the hyperparameter tuning is accomplished by implementing the secretary bird optimizer algorithm (SBOA) method to enhance the classification outcomes of the BMNet model. A wide-ranging experimental investigation uses a benchmark dataset to exhibit the superior performance of the proposed MMDoWA-ARDL technique. The comparison study of the MMDoWA-ARDL model portrayed a superior accuracy value of 99.39% over existing techniques.

摘要

钱包拒绝(DoW)攻击是一种网络攻击,其目标是通过在无服务器计算或云环境中造成极高成本,来发展和扩大一个组织的资金来源。由于无服务器架构具有自动扩展、按使用付费方式、成本放大和控制有限等特点,这些威胁主要与无服务器架构相关。无服务器计算即函数即服务(FaaS),是一种云计算(CC)系统,它允许开发者在没有传统服务器子结构的情况下构建和运行应用程序。深度学习(DL)模型作为机器学习(ML)技术的一部分,已发展成为网络安全领域的一种有效工具,能够更有效地识别异常行为并对指示威胁的模式进行分类。本研究针对下一代应用的无服务器计算,提出了一种使用深度学习属性约简减轻恶意钱包拒绝攻击(MMDoWA - ARDL)的方法。MMDoWA - ARDL方法的主要目的是提出一个新颖的框架,该框架使用先进的深度学习模型有效地检测和减轻无服务器环境中的恶意攻击。最初,所提出的MMDoWA - ARDL模型使用Z分数归一化进行数据预处理,将输入数据转换为有效格式。此外,基于特征选择过程的布谷鸟搜索优化(CSO)模型有效地识别与潜在恶意活动相关的最具影响力的属性。对于DoW攻击缓解过程,采用了双向长短期记忆多头自注意力网络(BMNet)方法。最后,通过实施秘书鸟优化算法(SBOA)方法完成超参数调整,以提高BMNet模型的分类结果。一项广泛的实验研究使用基准数据集展示了所提出的MMDoWA - ARDL技术的卓越性能。MMDoWA - ARDL模型的比较研究表明,其准确率高达99.39%,优于现有技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验