Suppr超能文献

基于量子计算和多种策略改进的秘书鸟优化算法用于KELM糖尿病分类

Secretary bird optimization algorithm based on quantum computing and multiple strategies improvement for KELM diabetes classification.

作者信息

Zhu Yu, Zhang Mingxu, Huang Qinchuan, Wu Xianbo, Wan Li, Huang Ju

机构信息

School of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China.

Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 620010, China.

出版信息

Sci Rep. 2025 Jan 30;15(1):3774. doi: 10.1038/s41598-025-87285-0.

Abstract

The classification of chronic diseases has long been a prominent research focus in the field of public health, with widespread application of machine learning algorithms. Diabetes is one of the chronic diseases with a high prevalence worldwide and is considered a disease in its own right. Given the widespread nature of this chronic condition, numerous researchers are striving to develop robust machine learning algorithms for accurate classification. This study introduces a revolutionary approach for accurately classifying diabetes, aiming to provide new methodologies. An improved Secretary Bird Optimization Algorithm (QHSBOA) is proposed in combination with Kernel Extreme Learning Machine (KELM) for a diabetes classification prediction model. First, the Secretary Bird Optimization Algorithm (SBOA) is enhanced by integrating a particle swarm optimization search mechanism, dynamic boundary adjustments based on optimal individuals, and quantum computing-based t-distribution variations. The performance of QHSBOA is validated using the CEC2017 benchmark suite. Subsequently, QHSBOA is used to optimize the kernel penalty parameter [Formula: see text] and bandwidth [Formula: see text] of the KELM. Comparative experiments with other classification models are conducted on diabetes datasets. The experimental results indicate that the QHSBOA-KELM classification model outperforms other comparative models in four evaluation metrics: accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity, and specificity. This approach offers an effective method for the early diagnosis and prediction of diabetes.

摘要

长期以来,慢性病分类一直是公共卫生领域的一个突出研究重点,机器学习算法得到了广泛应用。糖尿病是全球患病率很高的慢性病之一,其本身被视为一种疾病。鉴于这种慢性病的普遍性,众多研究人员正在努力开发强大的机器学习算法以进行准确分类。本研究介绍了一种用于准确分类糖尿病的革命性方法,旨在提供新的方法。结合核极限学习机(KELM)提出了一种改进的秘书鸟优化算法(QHSBOA)用于糖尿病分类预测模型。首先,通过整合粒子群优化搜索机制、基于最优个体的动态边界调整以及基于量子计算的t分布变异来增强秘书鸟优化算法(SBOA)。使用CEC2017基准测试套件验证了QHSBOA的性能。随后,使用QHSBOA优化KELM的核惩罚参数[公式:见原文]和带宽[公式:见原文]。在糖尿病数据集上与其他分类模型进行了对比实验。实验结果表明,QHSBOA-KELM分类模型在准确率(ACC)、马修斯相关系数(MCC)、灵敏度和特异性这四个评估指标上优于其他对比模型。该方法为糖尿病的早期诊断和预测提供了一种有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd92/11782485/72ab8a87b6a5/41598_2025_87285_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验