Suppr超能文献

整合SEResNet101和SE-VGG19用于高级宫颈病变检测:精准肿瘤学向前迈进的一步。

Integrating SEResNet101 and SE-VGG19 for advanced cervical lesion detection: a step forward in precision oncology.

作者信息

Ye Yan, Chen Yuanyuan, Pan Jiajia, Li Peipei, Ni Feifei, He Haizhen

机构信息

Department of Gynecological Protection, Wenzhou People's Hospital, Wenzhou, 325000, China.

出版信息

BMC Cancer. 2025 May 28;25(1):963. doi: 10.1186/s12885-025-14353-z.

Abstract

BACKGROUND

Cervical cancer remains a significant global health issue, with accurate differentiation between low-grade (LSIL) and high-grade squamous intraepithelial lesions (HSIL) crucial for effective screening and management. Current methods, such as Pap smears and HPV testing, often fall short in sensitivity and specificity. Deep learning models hold the potential to enhance the accuracy of cervical cancer screening but require thorough evaluation to ascertain their practical utility.

METHODS

This study compares the performance of two advanced deep learning models, SEResNet101 and SE-VGG19, in classifying cervical lesions using a dataset of 3,305 high-quality colposcopy images. We assessed the models based on their accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC).

RESULTS

The SEResNet101 model demonstrated superior performance over SE-VGG19 across all evaluated metrics. Specifically, SEResNet101 achieved a sensitivity of 95%, a specificity of 97%, and an AUC of 0.98, compared to 89% sensitivity, 93% specificity, and an AUC of 0.94 for SE-VGG19. These findings suggest that SEResNet101 could significantly reduce both over- and under-treatment rates by enhancing diagnostic precision.

CONCLUSION

Our results indicate that SEResNet101 offers a promising enhancement over existing screening methods, integrating advanced deep learning algorithms to significantly improve the precision of cervical lesion classification. This study advocates for the inclusion of SEResNet101 in clinical workflows to enhance cervical cancer screening protocols, thereby improving patient outcomes. Future work should focus on multicentric trials to validate these findings and facilitate widespread clinical adoption.

摘要

背景

宫颈癌仍然是一个重大的全球健康问题,准确区分低级别(LSIL)和高级别鳞状上皮内病变(HSIL)对于有效的筛查和管理至关重要。目前的方法,如巴氏涂片和HPV检测,在敏感性和特异性方面往往存在不足。深度学习模型有潜力提高宫颈癌筛查的准确性,但需要进行全面评估以确定其实际效用。

方法

本研究使用一个包含3305张高质量阴道镜图像的数据集,比较了两种先进的深度学习模型SEResNet101和SE-VGG19在宫颈病变分类中的性能。我们根据模型的准确性、敏感性、特异性和受试者操作特征曲线下面积(AUC)对其进行评估。

结果

在所有评估指标上,SEResNet101模型的表现均优于SE-VGG19。具体而言,SEResNet101的敏感性为95%,特异性为97%,AUC为0.98,而SE-VGG19的敏感性为89%,特异性为93%,AUC为0.94。这些发现表明,SEResNet101可以通过提高诊断精度显著降低过度治疗和治疗不足的发生率。

结论

我们的结果表明,SEResNet101相对于现有的筛查方法有显著改进,它集成了先进的深度学习算法,能显著提高宫颈病变分类的精度。本研究主张将SEResNet101纳入临床工作流程,以加强宫颈癌筛查方案,从而改善患者预后。未来的工作应侧重于多中心试验,以验证这些发现并促进其在临床上的广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0cc/12121095/4accc0622103/12885_2025_14353_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验