文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于预测精神科住院患者常见风险的高度可扩展深度学习语言模型。

A highly scalable deep learning language model for common risks prediction among psychiatric inpatients.

作者信息

Zhu Enzhao, Wang Jiayi, Zhou Guoquan, Li Chunbo, Chen Fazhan, Ju Kang, Chen Liangliang, Yin Yichao, Chen Yi, Zhang Yanping, Zhang Xu, Zhou Xinlin, Wang Zongyuan, Qiu Jianping, Wang Hui, Shi Weizhong, Wang Feng, Wang Dong, Chen Zhihao, Hou Jiaojiao, Li Hui, Ai Zisheng

机构信息

School of Medicine, Tongji University, Shanghai, China.

Shanghai Putuo Mental Health Center, Putuo District, Shanghai, China.

出版信息

BMC Med. 2025 May 28;23(1):308. doi: 10.1186/s12916-025-04150-7.


DOI:10.1186/s12916-025-04150-7
PMID:40437564
Abstract

BACKGROUND: There is a lack of studies exploring the performance of Transformers-based language models in common risks assessment among psychiatric inpatients. We aim to develop a scalable risk assessment model using multidimensional textualized data and test the stability, robustness, and benefit of this approach. METHODS: In this real-world cohort study, a deep learning language model was developed and validated using first hospitalized cases diagnosed with schizophrenia, bipolar disorder, and depressive disorder between January 2016 and March 2023 in three hospitals. The algorithm was externally validated on an independent testing cohort comprising 1180 patients. A total of 140 features, including first medical records (FMR), laboratory examinations, medical orders, and psychological scales, were assessed for analysis. The outcomes were short- and long-term impulsivity (STI and LTI), risk of suicide (STSS and LTSS), and need of physical restraint (STPR and LTPR) assessed by qualified nurses or clinicians. Analysis was carried out between August 2024 and June 2024. Models with different architectures and input settings were compared with each other. The area under the receiver operating characteristic curve (AUROC) was used to assess the primary performance of models. The clinical utility was determined by the net benefit under Youden's threshold. RESULTS: Of 7451 patients included in this study, 2982 (47.6%) were male, and the median (interquartile range) age was 42 (28-57) years. The overall incidence of outcomes was 635 (8.5%), 728 (10.5%), 659 (8.8%), 803 (10.8%), 588 (7.9%), and 728 (9.8%) for STPR, LTPR, STSS, LTSS, STI, and LTI, respectively. The multitask semi-structured Transformers-based language (SSTL) model showed more promising AUROCs (STPR: 0.915; LTPR: 0.844; STSS: 0.867; LTSS: 0.879; STI: 0.899; LTI: 0.894) in the prediction of these outcomes than single-tasked or multimodal language models and traditional structured data models. Combining FMR with other data from electronic health records led to significant improvements in the performance and clinical utility of SSTL models based on demographic, diagnosis, laboratory tests, treatment, and psychological scales. CONCLUSIONS: The SSTL model shows potential advantages in prognostic evaluation. FMR is a strong predictor for common risks prediction and may benefit other tasks in psychiatry with minimum requirements for data and data processing.

摘要

背景:目前缺乏关于基于Transformer的语言模型在精神科住院患者常见风险评估中表现的研究。我们旨在开发一种使用多维文本数据的可扩展风险评估模型,并测试该方法的稳定性、稳健性和益处。 方法:在这项真实世界队列研究中,使用2016年1月至2023年3月期间在三家医院首次住院诊断为精神分裂症、双相情感障碍和抑郁症的病例开发并验证了一种深度学习语言模型。该算法在一个由1180名患者组成的独立测试队列上进行了外部验证。共评估了140个特征,包括首次病历(FMR)、实验室检查、医嘱和心理量表以进行分析。结局指标为合格护士或临床医生评估的短期和长期冲动性(STI和LTI)、自杀风险(STSS和LTSS)以及身体约束需求(STPR和LTPR)。分析于2024年8月至2024年6月进行。比较了具有不同架构和输入设置的模型。使用受试者操作特征曲线下面积(AUROC)来评估模型的主要性能。临床效用由约登指数阈值下的净效益确定。 结果:本研究纳入的7451例患者中,2982例(47.6%)为男性,年龄中位数(四分位间距)为42(28 - 57)岁。STPR、LTPR、STSS、LTSS、STI和LTI结局的总体发生率分别为635例(8.5%)、728例(10.5%)、659例(8.8%)、803例(10.8%)、588例(7.9%)和728例(9.8%)。基于多任务半结构化Transformer的语言(SSTL)模型在预测这些结局方面显示出比单任务或多模态语言模型以及传统结构化数据模型更有前景的AUROC(STPR:0.915;LTPR:0.844;STSS:0.867;LTSS:0.879;STI:0.899;LTI:0.894)。将FMR与电子健康记录中的其他数据相结合,显著提高了基于人口统计学、诊断、实验室检查、治疗和心理量表的SSTL模型的性能和临床效用。 结论:SSTL模型在预后评估中显示出潜在优势。FMR是常见风险预测的有力预测指标,并且在对数据和数据处理要求最低的情况下可能有益于精神病学中的其他任务。

相似文献

[1]
A highly scalable deep learning language model for common risks prediction among psychiatric inpatients.

BMC Med. 2025-5-28

[2]
Comprehensive Symptom Prediction in Inpatients With Acute Psychiatric Disorders Using Wearable-Based Deep Learning Models: Development and Validation Study.

J Med Internet Res. 2024-11-13

[3]
Short-term Suicide Risk After Psychiatric Hospital Discharge.

JAMA Psychiatry. 2016-11-1

[4]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[5]
Predicting Diagnostic Progression to Schizophrenia or Bipolar Disorder via Machine Learning.

JAMA Psychiatry. 2025-5-1

[6]
Right care, first time: a highly personalised and measurement-based care model to manage youth mental health.

Med J Aust. 2019-11

[7]
Understanding and predicting suicidality using a combined genomic and clinical risk assessment approach.

Mol Psychiatry. 2015-11

[8]
Development and Validation of a Deep Learning Model for Predicting Treatment Response in Patients With Newly Diagnosed Epilepsy.

JAMA Neurol. 2022-10-1

[9]
Development and Validation of a Dynamic Real-Time Risk Prediction Model for Intensive Care Units Patients Based on Longitudinal Irregular Data: Multicenter Retrospective Study.

J Med Internet Res. 2025-4-23

[10]
Projective Technique Testing Approach to the Understanding of Psychological Pain in Suicidal and Non-Suicidal Psychiatric Inpatients.

Int J Environ Res Public Health. 2019-12-31

本文引用的文献

[1]
Detection of suicidality from medical text using privacy-preserving large language models.

Br J Psychiatry. 2024-12

[2]
Development and validation of a machine learning model for prediction of type 2 diabetes in patients with mental illness.

Acta Psychiatr Scand. 2025-3

[3]
Prevalence and variability of restrictive care practice use (physical restraint, seclusion and chemical restraint) in adult mental health inpatient settings: A systematic review and meta-analysis.

J Clin Nurs. 2024-4

[4]
Metabolomics on depression: A comparison of clinical and animal research.

J Affect Disord. 2024-3-15

[5]
Restraint and Seclusion Practices and Policies in U.S. Forensic Psychiatric Hospitals.

J Am Acad Psychiatry Law. 2023-12-8

[6]
Trajectories through semantic spaces in schizophrenia and the relationship to ripple bursts.

Proc Natl Acad Sci U S A. 2023-10-17

[7]
Natural Language Processing in Psychiatry: A Field at an Inflection Point.

Biol Psychiatry Cogn Neurosci Neuroimaging. 2023-10

[8]
A scoping review of preprocessing methods for unstructured text data to assess data quality.

Int J Popul Data Sci. 2022

[9]
Lexical stability of psychiatric clinical notes from electronic health records over a decade.

Acta Neuropsychiatr. 2023-8-25

[10]
Suicide risk detection using artificial intelligence: the promise of creating a benchmark dataset for research on the detection of suicide risk.

Front Psychiatry. 2023-7-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索