Peterson Richard-Joseph L, Neppel Elanna P, Holmes Daniel, Trinh P Anh, Ofoli Robert Y, Dorgan John R
Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI, 48823, USA.
Chemistry Department, Michigan State University, East Lansing, MI, 48823, USA.
ChemSusChem. 2025 Jul 27;18(15):e202500509. doi: 10.1002/cssc.202500509. Epub 2025 Jun 30.
Chemical upcycling of poly(ethylene terephthalate) (PET) through ammonolysis is pursued. Model studies are conducted on bis(2-hydroxyethyl) terephthalate reacting with ammonia in the presence of excess ethylene glycol (EG) to form terephthalamide. Reactions conducted over the range of temperatures from 50 to 125 °C yield pre-exponential factors of A = 758 ± 120 L mol h /A = 1033 ± 220 L mol h and activation energies of E = 22.1 ± 1.5 kJ mol and Ea = 26.5 ± 2.1 kJ mol. Diffusional limitations are explored using particle sizes in the ranges of 1800-2500 μm, 250-600 μm, and 150-250 μm. Data from the particle size experiments is combined with the rate constants determined from the model studies to construct an effectiveness factor. Diffusivity is used as a fitting parameter, resulting in an estimated value of 1.37 ± 0.48 E-7 cm s for ammonia in PET at 100 °C, which compares well to related literature values. Diffusional limitations are of profound importance; for particles of only 1 millimeter in average thickness, the conversion rate is decreased by a factor of ten! The comprehensive understanding of the ammonolysis of PET in EG provided can play an important role in improving material reuse and fostering a more circular economy.
人们致力于通过氨解实现聚对苯二甲酸乙二酯(PET)的化学升级循环利用。对双(2 - 羟乙基)对苯二甲酸酯在过量乙二醇(EG)存在下与氨反应生成对苯二甲酰胺进行了模型研究。在50至125°C的温度范围内进行的反应,得到的指前因子为A = 758±120 L·mol⁻¹·h⁻¹/A = 1033±220 L·mol⁻¹·h⁻¹,活化能为E = 22.1±1.5 kJ·mol⁻¹和Ea = 26.5±2.1 kJ·mol⁻¹。使用粒径范围为1800 - 2500μm、250 - 600μm和150 - 250μm的颗粒来探究扩散限制。将粒径实验数据与模型研究确定的速率常数相结合,构建有效因子。扩散系数用作拟合参数,在100°C时,PET中氨的扩散系数估计值为1.37±0.48×10⁻⁷ cm²·s⁻¹,与相关文献值比较吻合。扩散限制至关重要;对于平均厚度仅为1毫米的颗粒,转化率降低了十倍!所提供的对PET在EG中氨解的全面理解,可在改善材料再利用和促进更循环的经济方面发挥重要作用。