Ji Xiangdong
Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742, USA.
Research (Wash D C). 2025 May 28;8:0695. doi: 10.34133/research.0695. eCollection 2025.
Although equivalent in the infinite-momentum limit, large-momentum effective theory (LaMET) and short-distance operator product expansion (SDE) are 2 very different approaches to obtain parton distribution functions (PDFs) from coordinate-space correlation functions computed in a large-momentum proton through lattice quantum chromodynamics (QCD). LaMET implements a momentum-space expansion in to directly calculate PDFs in a middle region of Bjorken . SDE applies perturbative QCD at small Euclidean distances to extract a range of leading-twist correlations, , corresponding to the Fourier transformation of PDFs. An incomplete leading-twist correlation from SDE cannot be readily converted to a momentum-space distribution, and solving its constraints on the PDFs (or the so-called "inverse problem") involves phenomenological modeling of the missing information beyond and has no systematic control of errors. I argue that the best use of short-distance correlations is to constrain the PDFs in the LaMET-complementary regions: and through expected end-point asymptotics, and use the results of the pion valence quark distribution from the ANL/BNL collaboration to demonstrate how this can be done.
尽管在无限动量极限下是等效的,但大动量有效理论(LaMET)和短程算符乘积展开(SDE)是两种截然不同的方法,用于从通过格点量子色动力学(QCD)在大动量质子中计算的坐标空间关联函数来获得部分子分布函数(PDF)。LaMET在动量空间进行展开,以直接计算 Bjorken (x) 中间区域的PDF。SDE在小欧几里得距离处应用微扰QCD,以提取一系列对应于PDF傅里叶变换的领先扭转关联 (C(x))。来自SDE的不完整领先扭转关联不能轻易转换为动量空间分布,并且求解其对PDF的约束(即所谓的“反问题”)涉及超出 (x) 的缺失信息的唯象建模,并且对误差没有系统的控制。我认为,对短程关联的最佳利用是通过预期的端点渐近性来约束LaMET互补区域中的PDF:(x \to 0) 和 (x \to 1),并使用美国阿贡国家实验室/布鲁克海文国家实验室合作的π介子价夸克分布结果来展示如何做到这一点。