Suppr超能文献

神经退行性疾病中人工智能的知识图谱:一项为期十年的文献计量与可视化研究

Knowledge map of artificial intelligence in neurodegenerative diseases: a decade-long bibliometric and visualization study.

作者信息

Huang Junwei, Wang Shuqi, Liao Xuankai, Su Danting, Lin Rubing, Zhang Tao, Zhao Long

机构信息

Sydney Smart Technology College, Northeastern University at Qinhuangdao, Qinhuangdao, China.

Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.

出版信息

Front Aging Neurosci. 2025 May 14;17:1586282. doi: 10.3389/fnagi.2025.1586282. eCollection 2025.

Abstract

BACKGROUND

As the incidence of neurodegenerative diseases increases, the related AI research is getting more and more advanced. In this study, we analyze the literature in this field over the last decade through bibliometric and visualization methods with the aim of mining the prominent journals, institutions, authors, and countries in this field and analyzing the keywords in order to speculate on possible future research trends.

METHODS

Our study extracted 1,921 relevant publications spanning 2015-2025 from the Web of Science Core Collection database. We conducted comprehensive bibliometric analyses and knowledge mapping visualizations using established scientometric tools: CiteSpace and Bibliometrix.

RESULTS

A total of 1921 documents were included in the study, the number of publications in this field showed an overall increasing trend, and the average number of citations showed a downward trend since 2019. Among the journals, had the highest number of publications. In addition, we identified 22 core journals. Institution wise, University of London has the highest participation. Among the authors, the highest number of publications is Benzinger, Tammie. The highest number of citations is Fingere Elizabeth. At the national level, the United States is number one in the world in terms of influence in this field, and China is ranked number two, both of which are well ahead of other countries and are major contributors to this field. The analysis of keywords showed the centrality of Alzheimer disease, machine learning, Parkinsons disease, and deep learning. All the studies were clustered based on keywords to get seven clusters: 0. immune infiltration; 1. Parkinsons disease; 2. multiple sclerosis; 3. mild cognitive impairment; 4. deep learning; 5. machine learning; 6. freesurfer; 7. scale. In addition, we also found the continuation of the trending topics, which are Parkinsons disease, deep learning, and machine learning.

CONCLUSION

Based on the relationship between keywords and time, we speculate that there are four possible research trends: 1. Precision diagnosis with multimodal data fusion. 2. Pathological mechanism analysis and target discovery. 3. Interpretable AI and clinical translation. 4. Technology differentiation for subdivided diseases.

摘要

背景

随着神经退行性疾病发病率的上升,相关的人工智能研究越来越先进。在本研究中,我们通过文献计量学和可视化方法分析了过去十年该领域的文献,旨在挖掘该领域的著名期刊、机构、作者和国家,并分析关键词,以推测未来可能的研究趋势。

方法

我们的研究从科学引文索引核心合集数据库中提取了2015 - 2025年的1921篇相关出版物。我们使用既定的科学计量工具CiteSpace和Bibliometrix进行了全面的文献计量分析和知识图谱可视化。

结果

该研究共纳入1921篇文献,该领域的出版物数量总体呈上升趋势,自2019年以来平均被引次数呈下降趋势。在期刊方面, 发表的文章数量最多。此外,我们确定了22种核心期刊。在机构方面,伦敦大学的参与度最高。在作者中,发表文章数量最多的是坦米·本津格(Benzinger, Tammie)。被引次数最多的是伊丽莎白·芬格(Fingere Elizabeth)。在国家层面,美国在该领域的影响力位居世界第一,中国排名第二,两者均领先于其他国家,是该领域的主要贡献者。关键词分析显示阿尔茨海默病、机器学习、帕金森病和深度学习处于核心地位。所有研究基于关键词进行聚类,得到七个聚类:0.免疫浸润;1.帕金森病;2.多发性硬化症;3.轻度认知障碍;4.深度学习;5.机器学习;6.自由曲面重建软件(Freesurfer);7.量表。此外,我们还发现了热门话题的延续,即帕金森病、深度学习和机器学习。

结论

基于关键词与时间的关系,我们推测有四种可能的研究趋势:1.多模态数据融合的精准诊断。2.病理机制分析与靶点发现。3.可解释人工智能与临床转化。4.细分疾病的技术差异化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba73/12116524/f8d5e2867f9b/fnagi-17-1586282-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验